Feeds:
Posts
Comments

Archive for the ‘breathing’ Category

The most tenuous shaping breath were here too ...
Image by LunaDiRimmel via Flickr

From wikipedia:

The Ātman (IAST: Ātman, sanskrit: आत्मन्) is a philosophical term used within Hinduism, especially in the Vedanta school to identify the SOUL whether in global sense (world’s soul) or in individual sense (of a person own soul). The word ātman is connected with the Indo-European root *ēt-men (BREATH) and is cognate with Old English “æþm”, Greek “asthma”, German “Atem”: “atmen” (to BREATHE).

The English word SPIRIT comes from the Latin spiritus, meaning “BREATH” (compare spiritus asper), but also “soul, courage, vigor”, ultimately from a Proto-Indo-European *(s)peis, as opposed to Latin anima and Greek psykhē. The word apparently came into Middle English via Old French. The distinction between soul and spirit developed in the Abrahamic religions: Thus we find Greek ψυχη opposite πνευμα ; Latin anima opposite spiritus; Arabic nafs (نفس) opposite rúħ (روح); Hebrew neshama (נְשָׁמָה nəšâmâh) or nephesh (in Hebrew neshama comes from the root NŠM or “BREATH“) opposite ruach (רוּחַ rûaħ).

Similar concepts in other languages include Greek pneuma from which is derived the term “Pneumatology” – the study of SPIRITUAL beings and phenomena, especially the interactions between humans and God. Pneuma (πνεῦμα) is Greek for “BREATH“, which metaphorically describes a non-material being or influence.  Similarly, Scandinavian languages, Slavic languages and the Chinese language (qi) use the words for “breath” to express concepts similar to “the spirit“.

Enhanced by Zemanta

Read Full Post »

Practice Yoga, Be Healthy! {EXPLORED}
Image by VinothChandar via Flickr

Have you ever noticed how everything healthy these days is “anti-oxidant” this and “anti-oxidant” that?  Green tea, dark chocolate, vitamin E and vitamin C – just to name a few.  Surely, its all the rage to be “anti” oxygen these days (indeed, there are currently 458 clinical trials open now for the study of anti-oxidants!).

But wait.  Isn’t oxygen the stuff we BREATHE?  Don’t we need it to live?  How can we be so “anti” oxidant?

Herein lies a very sobering chemical fact of life.  We need oxygen to breathe – while at the same time – the very same oxygen produces so-called reactive oxygen species (hydrogen peroxide, hypochlorous acid, and free radicals such as the hydroxyl radical and the superoxide anion) which cause damage to our lipids, proteins and even our genome.  What gives us life – also takes away life – a little bit each time we breathe.

Such is the basis for the healthy foods and myriad dietary supplements that (promise to) counteract and biochemically scavenge the toxic reactive oxygen molecules in our bodies.  But for the fact it would make me even fatter, I’d promptly say, “Bring on more dark chocolate!“.

But what if we could just forgo all those dietary supplements, and just USE LESS oxygen?  Might that be another way to enhance longevity and health?

With this thought in mind, I enjoyed a research article entitled, “Oxygen Consumption and Respiration Following Two Yoga Relaxation Techniques” by Drs. Shirley Telles, Satish Kumar Reddy and H. R. Nagendra from the Vivekananda Kendra Yoga Research Foundation in Bangalore, India.  The article was published in Applied Psychophysiology and Biofeedback, Vol. 25, No. 4, 2000.

In their research article, the authors noted that – with practice – yoga can help an individual voluntarily lower their cardiac and metabolic levels.  A number of previous studies show that advanced meditators and yoga practitioners can lower their heart rate and respirations to astonishingly low levels (more posts on this to come).  The scientists in this study asked simply whether a relatively brief 22min routine of “cyclic meditation” (CM) consisting of yoga postures interspersed with periods of supine rest led to a greater reduction in oxygen consumption when compared to 22mins of supine rest (shavasana or SH).  Their question is relevant to the life-giving/damaging effects of oxygen, because a lower metabolic rate means one is using less oxygen.  According to the authors:

“We hypothesized that because cyclic meditation (CM) has repetitive cycles of ‘activating’ and ‘calming’ practices, based on the idea from the ancient texts, as discussed earlier, practicing CM would cause greater relaxation compared with supine rest in shavasan (SH).”

In the results and discussion of the data, they found (using a sample of 40 male adults) that the when they measured oxygen consumption at the beginning and at the end of the session, that the yoga postures/rest routine (CM) resulted in a 32% reduction in oxygen consumption (this is the amount of oxygen used when sitting still at the end of the session) while just laying in shavasana led to only a 10% reduction in the amount of oxygen used at the end of the session.

Wow!  So even after moving through postures – which admittedly gets one’s heart pumping and elevates one’s breathing – I would be using less oxygen (when sitting at the end of the session), than if I had just decided to lay in a supine position.  In this instance, I guess I may be using more oxygen overall during the session, but perhaps would be glad to improve the efficiency of my breathing – and intake of oxygen – in the long run (after many years of practice I’m sure).  Maybe this is a physiological/biochemical basis for the longevity-promoting benefits of yoga?

How does the effect work?  Does the act of moving in and out of postures engage the sympathetic nervous system (something not observed for shavasana)?   Much to explore here.  The authors point out that these effects on improving the efficiency of breathing and oxygen consumption may not be specific to yoga, but to any MODERATE exercise regimen, where exercise and some sort of mental focus is practiced (Tai Chi for example).

Move and pay attention to your breath.  I will keep this in mind tonight in my beginners class.  By the way, there are currently 93 clinical trials involving yoga!

Enhanced by Zemanta

Read Full Post »

The Karma Machine + Easy Photoshop Tattoo Tuto...
Image by vramak via Flickr

One of the themes that emerges in I.I atha yoganusasanam, and runs throughout the yoga sutras, is the notion that a yoga practice will bring one into a deeper awareness of the self.  To begin to explore the modern science notion of self-awareness, here’s a 2009 paper entitled, “The ‘prediction imperative’ as the basis for self-awareness” by Rodolfo R. Llinas and Sisir Roy [doi:10.1098/rstb.2008.0309].  The paper is part of a special theme issue from the Philosophical Transactions of the Royal Society B with the wonderfully karmic title: Predictions in the brain: using our past to prepare for the future.

Without unpacking the whole (open access) article, here are a few ideas that seem to connect loosely to themes in yoga.

The main issue addressed by the authors is how the brain manages to solve the computational problem of movement.  Here’s the problem: to just, for example,  reach into a refrigerator and grab a carton of milk (a far cry from, say, scorpion pose) they point out that,

“there are 50 or so key muscles in the hand, arm and shoulder that one uses to reach for the milk carton (leading to) over 1,000,000,000,000,000 combinations of muscle contractions (that) are possible.”

Yikes!  that is an overwhelming computational problem for the brain to solve – especially when there are 1,000-times FEWER neurons in the entire brain (only a mere 1,000,000,000,000 neurons).  To accomplish this computational feat, the authors suggest that brain has evolved 2 main strategies.

Firstly, the authors point out that the brain can lower the computational workload of controlling movement (motor output) by sending motor control signals in a non-continuous and pulsatile fashion.

“We see that the underlying nature of movement is not smooth and continuous as our voluntary movements overtly appear; rather, the execution of movement is a discontinuous series of muscle twitches, the periodicity of which is highly regular.”

This computational strategy has the added benefit of making it easier to bind and synchronize motor-movement signals with a constant flow of sensory input:

“a periodic control system may allow for input and output to be bound in time; in other words, this type of control system might enhance the ability of sensory inputs and descending motor command/controls to be integrated within the functioning motor apparatus as a whole.”

The idea of synchronizing sensory information with pulsing motor control signals brings to mind more poetic notions of rhythmicity and the way that yogis use their breath to enhance and unify  their outer and inner world experience.  Neat!  Also, I very much like the idea that our brains have enormously complex computational tasks to perform, so I’m keen to do what I can to help out my central nervous system.  Much gratitude to you brain!

Secondly, the authors then move ahead to describe the way in which neural circuits in the body and brain are inherently good at learning and storing information which makes them very good at predicting what to do with incoming sensory inputs.  This may just be another strategy the brain has evolved to simplify the enormous computational load associated with moving and coordinating the body.  Interestingly, the authors note,

“while prediction is localized in the CNS, it is a distributed function and does not have a single location within the brain. What is the repository of predictive function? The answer lies in what we call the self, i.e. the self is the centralization of the predictive imperative.  The self is not born out of the realm of consciousness—only the noticing of it is (i.e. self-awareness).”  Here’s a link to Llinas’ book on this topic.

The “self” is not just in the brain? but distributed throughout the entire CNS? Whoa!  Much to explore here.  Many thematic tie-ins with ancient Vedic notions of self and consciousness … will explore this in the future!

One last passage I found of interest was written by Moshe Bar, the editor of the special issue, who suggested that neural solutions to these inherent computational challenges make the brain/mind a naturally restless place.  His words,

“As is evident from the collection of articles presented in this issue, the brain might be similarly flexible and ‘restless’ by default. This restlessness does not reflect random activity that is there merely for the sake of remaining active, but, instead, it reflects the ongoing generation of predictions, which relies on memory and enhances our interaction with and adjustment to the demanding environment.”

My yoga teachers often remind me that “monkey mind” is normal and with more practice, it will subside.  Very cool to see a tie-in with modern research.

Enhanced by Zemanta

Read Full Post »

« Newer Posts