Image via Wikipedia Amidst all the genome-wide ‘snp-ing’ going on of late (my 23-and-me data should arrive in a couple of weeks), Walsh and colleagues provide an incredible trove of structural variation (deletions/insertions in the size range of more than 100kbp but less than 100Mbp) that is 3- to 4-fold enriched in patients with adult onset and childhood onset schizophrenia. Their paper, “Rare Structural Variants Disrupt Multiple Genes in Neurodevelopmental Pathways in Schizophrenia” (DOI 10.1126/science.1155174) uses a variety of genome hybriziation techniques to map novel variants and finds, amazingly, that many of the hits are within genes that function in common pathways of brain development and synaptic function. The authors admit that it is hard to ascribe a population risk value to any one of these variants, but the biochemical pathways suggest that the genes that were identified by this method deserve a great deal of attention in the basic and clinical genetic research community.
Archive for March, 2008
Genome-wide assesment of structural variation yields clues to development of schizophrenia
Posted in Chromosome structural variants, tagged Mental disorder, schizophrenia on March 28, 2008| Leave a Comment »
Genetic predictors of cortical development: No meds for my kids thank you very much
Posted in DRD4, Orbitofrontal cortex, Posterior parietal cortex, tagged Mental disorder on March 21, 2008| Leave a Comment »

- Image via Wikipedia
Attention Deficit Hyperactivity Disorder is one of the most widespread psychiatric diagnoses in children. Parents who are faced with the decision to medicate or not medicate their children may wonder if their child – given a bit more time – won’t just “grow out of it”, as many children seem to do. With this in mind, it would obviously be helpful to have biomarkers that could predict whether certain children are more likely to simply acquire better attentional control on their own, and those children that might not. In their paper, “Polymorphisms of the Dopamine D4 Receptor, Clinical Outcome, and Cortical Structure in Attention-Deficit/Hyperactivity Disorder” (Arch Gen Psychiatry Vol 64 (no. 8), Aug 2007) a veritable dream team of child developmental neuroscientists working across several medical institutions report on two such biomarkers. One biomarker is the thickness of the orbitofrontal cortex and posterior parietal cortex. MRI-based measurments of these parts of the brain (just about 5mm thick!) show that children who carry a diagnosis of ADHD have a thinner cortical sheet in these regions. Another biomarker is genetic variation in an intracytoplasmic loop of the G-protein coupled dopamine D4 receptor (DRD4). Children with ADHD are more likely to carry a longer 7-repeat version of this VNTR polymorphism than the more common 4-repeat. Interestingly, the research team found that healthy children who carry the 7-repeat genetic variant also have slightly thinner cortex in the orbitofrontal and posterior parietal cortex, suggesting that this genetic variant may influence the risk of ADHD by way of an effect on cortical development. Additionally, the research team found that the cortex of ADHD children who carry this 7-repeat genetic variant “catches up” from age 8 and eventually falls within the range of healthy children by age 15. Lastly, the team reports that ADHD children who carry the 7-repeat had better clinical outcomes (albeit, many of the ADHD children in this study were treated with medication). Nevertheless, it appears that some progress has been made in identifying biomarkers that might predict favorable developmental trajectories.
rs4570625 – this is a really cool snp – if you’re a nerd
Posted in DLPFC, Frontal cortex, TPH2, tagged 23andMe, Frontal lobe, Intelligence, personality on March 19, 2008| Leave a Comment »

- Image by TheAlieness GiselaGiardino²³ via Flickr
Every student can recall at least one stereotypical professor who – while brilliant – kept the students amused with nervous and socially inept behavior. Let’s face it, if you’re in academia, you’re surrounded by these – uh, nerds – and, judging by the fact that you are reading (not to mention writing) this blog right now – probably one of them. So, its natural to ask whether there might be a causal connection between emotionality, on the one hand, and cognitive performance on the other. Research on the neuromodulator serotonin shows that it plays a key role in emotional states – in particular, anxiety. Might it exert effects on cognitive performance ? In their paper, “A functional variant of the tryptophan hydroxylase 2 gene impacts working memory: A genetic imaging study“, (DOI: 10.1016/j.biopsycho.2007.12.002) Reuter and colleagues use a genetic variation a G to T snp (rs4570625) in the tryptophan hydroxylase 2 gene, a rate limiting biosynthetic isoenzyme for serotonin to evaluate its effect on a cognitive task. They ask subjects (who are laying in an MRI scanner) to perform a rather difficult cognitive task called the N-back task where the participant must maintain a running memory queue of a series of sequentially presented stimuli. Previous research shows that individuals with the GG genotype show higher scores on anxiety-related personality traits and so Reuter and team ask whether these folks activate more or less of their brain when performing the N-back working memory task. It turns out that the GG group showed clusters of activity in the frontal cortex that showed less activation than the TT group. The authors suggest that the GG group can perform the task using by recruiting less of their brains – hence suggesting that perhaps there just might be a genetic factor that accounts for a possible negative correlation between efficient cognitive performance and emotionality.
My 23andMe profile shows a GG here – nerd to the hilt – what will I use the rest of my PFC for ? Something else to worry about.
Genetic ski patrol up and down the inverted U
Posted in Dopamine, DRD2, Frontal cortex, Striatum, tagged Frontal lobe, Personalized medicine on March 14, 2008| Leave a Comment »
The selection and dosing of medication in psychiatry is far from scientific – even though a great deal of hard science goes into the preclinical design and clinical development. One reason, among many, has to do with the so-called ‘inverted-U-shaped’ relationship between the dose of a psychoactive compound and an individuals’ performance. Some folks show dramatic improvement with a given dose (their system may be functioning down at the low side of the inverted U mountain and hence, and added boost from medication may send their system up in performance), while others may actually get worse (those who are already at the peak of the inverted U mountaintop). How can a psychiatrist know where the patient is on this curve – will the medication boost raise or topple their patient’s functioning ? Some insight comes in the form of a genetic marker closely linked to the DRD2 gene, that as been shown to predict response to a dopaminergic drug.
Michael Cohen and colleagues, in their European Journal of Neuroscience paper (DOI: 10.1111/j.1460-9568.2007.05947.x) entitled, “Dopamine gene predicts the brain‘s response to dopaminergic drug” began with a polymorphism linked to the DRD2 gene wherein one allele (TaqA1+) is associated with fewer DRD2 receptors in the striatum (these folks should show improvement when given a DRD2 agonist) while folks with the alternate allele (TaqA1-) were predicted to show a falling off of their DRD2 function in response to additional DRD2 stimulation. The research team then asked participants to perform a cognitive task – a learning task where subjects use feedback to choose between a ‘win’ or ‘not win’ stimulus – that is well known to rely on proper functioning of DRD2-rich frontal and striatal brain regions.
Typically, DRD2 agonists impair reversal learning and, as expected, subjects in the low DRD2 level TaqA1+ genetic group actually got “more” impaired – or perseverated longer on rewarding stimuli and required more trials to switch on the go and figure out which stimulus was the “win” stimulus. Similarly, when differences in brain activity between baseline and positive “you win” feedback was measured, subjects in the drug treated, TaqA1+ genetic group showed an increase in activity in the putamen and the medial orbitofrontal cortex while subjects in the TaqA1- showed decreases in brain actiity in these regions. The authors suggest that the TaqA1+ group generally has a somewhat blunted response to positive feedback (sore winners) but that the medication enhanced the frontal-striatal reaction to positive feedback. Functional connectivity analyses showed that connectivity between the frontal cortex and striatum was worsened by the DRD2 agonist in the TaqA1+ genetic group and improved in the TaqA1- group.
Although the interpretations of these data are limited by the complexity of the systems, it seems clear that the TaqA1 genetic marker has provided a sort of index of baseline DRD2 function that can be useful in predicting an individual’s relative location on the theoretical inverted-U-shaped curve.
Autism risk factor CNTNAP2 bears phylogenetic evidence of positive selection
Posted in CNTNAP2, tagged autism, evolution on March 7, 2008| 1 Comment »
Image via Wikipedia I was just browsing the recent paper “Natural selection has driven population differentiation in modern humans” by Barreiro and colleagues (doi:10.1038/ng.78) and noticed in their supplementary table that the autism risk factor CNTNAP2 (as blogged about earlier here) contains at least one non-synonymous or 5′-UTR SNP with a high Fst value. Yann Klimenidis has a great post on this paper.
Biomarker-friendly healthcare marketplace unveiled
Posted in Uncategorized, tagged economics on March 1, 2008| Leave a Comment »
Dr. Scott Shreeve has a great post on the launch of “Carol” a new, open & transparent healthcare marketplace. With DNA Direct offering services there, its easy to see how biomarkers and biomarker-driven care can work within a consumer-driven business model. Exciting to see the future today !!
![Reblog this post [with Zemanta]](https://i0.wp.com/img.zemanta.com/reblog_e.png)