Feeds:
Posts
Comments

Posts Tagged ‘Mental disorder’

BeFunky_OldPhoto_12

Have you ever read the DSM and thought you had EVERYTHING? Me too.

And that, sort of,  has always been a big problem … that it is really hard to separate the normal experience of anguish and suffering as part of our everyday mental and emotional lives from what is labelled a “disorder”. At the same time, however, patients, doctors and payors need some type of common reference so as to keep the diagnosis and treatment of mental suffering in-line with the way other medical illnesses are handled. So, everyone (in psychiatry, at least) knows the DSM will always be highly flawed and yet also highly necessary … so, you know, just try and live with it … but don’t expect, for a moment, to search for and find discrete genetic variants that correspond to DSM categories of mental disorders. No … because the DSM categories do not correspond well to the underlying biology of the CNS … the DSM does not “cut nature at its joints” so to speak.

Russ Poldrack provides a glimpse into what the future of diagnosing mental illness might look like using slightly more objective, quantifiable and biologically relevant measures of the brain’s physiological processes.

Also, I stumbled onto an awesome read about the creation of DSM-5 entitled, The Book of Woe

The overall thrust of the manual [DSM-5], the BPS complained, was to identify the source of psychological suffering “as located within individuals” rather than in their “relational context,” and to overlook the “undeniable social causation of many such problems.”  The APA could hardly deny any of this. As Regier had told the consumer groups on the conference call, the manual’s new organizational structure was designed to reflect “what we’ve learned about the brain, behavior, and genetics during the past two decades.” It doesn’t get much more “within the individual” and outside the “relational context” than that. (p. 239)

“Dereification is just as dumb as reinfication,” he [Allen Frances] told me. “A construct is just a construct – not to be worshiped and not to be denigrated.” Psychiatry, he was saying, has to live in the tension between the desire for certainty about the nature of our suffering and the impossibility of understanding it (or ourselves) completely. A DSM that tries to end this tension by turning itself into a living document was bound to collapse into chaos; that was the cardinal error of the incompetent DSM-5 regime. (p. 279)

“What [Dr. Thomas] Insel [Director of NIMH] heard “over and over again” on his tour was that psychiatrists were tired of being trapped by the DSM. “We are so embedded in this structure,” he told me. He and his colleagues had spent so much time diagnosing mental disorders that “we actually believe they are real. But there’s no reality. These are just constructs. There’s no reality to schizophrenia and depression.” Indeed, Insel said, “we might have to stop using terms like depression and schizophrenia, because they are getting in our way, confusing things.” Thirty years after Spitzer burned down DSM-II and built the DSM-III in its ashes, psychiatry might once again have to “just sort of start over.”” (p.340)

Yikes! after reading The Book of Woe, DSM-5 sounds, um, totally wack … if not a tool flagrantly designed to further commodify human suffering for the benefit of a medico-industrial complex. NIMH Director Thomas Insel’s recent announcement that, “NIMH will be re-orienting its research away from DSM categories.” suggests a future where diagnosis will based on biological measures and treatments are directed toward specific circuits.

Treatment for specific circuit dynamics sounds very promising. However, I thought Dr. Allen Frances, as quoted in The Book of Woe made a great point (p.346) that, “The trick is to develop a healing relationship, to care for the person not just the disorder, to diagnose and treat cautiously, and to see the healthy part of the person not just the sick.”

* Maybe that is the hope of this blog also … to take out and explore the intricate biological & molecular parts … but also to try and place them back into their original evolutionary, living, breathing, copulating (or more often the case of just thinking about copulating) “whole” human being.

Read Full Post »

Mitochondrial damage is associated with premature aging in the body and related disorders such as Parkinson’s Disease in the brain.  If you want to grow old and healthy … be nice to your mitochondria … eat healthy foods and exercise.

When mitochondria are damaged, cells can use proteolysis to clean them out, but when this cleaning out process fails … trouble ensues.   PINK1 plays a role on the clearance of damaged mitochondria as revealed by Dr. Derek P. Narendra and colleagues: PINK1 Is Selectively Stabilized on Impaired Mitochondria to Activate Parkin

Since neurons in the Substantia Nigra are postmitotic, any mitochondrial damage they acquire could accumulate over an organism’s lifetime, leading to progressive mitochondrial dysfunction—including increased oxidative stress, decreased calcium buffering capacity, loss of ATP, and, eventually, cell death—unless quality control processes eliminate the damaged mitochondria.

The findings we report in this paper suggest a new model in which PINK1 and Parkin together sense mitochondria in distress and selectively target them for degradation. In this pathway, PINK1 acts as a flag that accumulates on dysfunctional mitochondria and then signals to Parkin, which tags these mitochondria for destruction. Since disease-causing mutations in PINK1 or Parkin disrupt this pathway, patients with these mutations may not be able to clean up their damaged mitochondria, leading to the neuronal damage typical of parkinsonism.

Dr. Terry Wahls has some very inspiring experiences to share on the topic of mitochondrial care.

Read Full Post »

Corticotropin-releasing hormone
Image via Wikipedia

According to the authors of  “Protective effect of CRHR1 gene variants on the development of adult depression following childhood maltreatment: replication and extension”  [PMID: 19736354], theirs is “the first instance of Genes x Environment research that stress has been ascertained by more than 1 study using the same instrument“.  The gene they speak of is the Corticotropin-releasing hormone receptor 1 (CRHR1) gene (SNPs rs7209436, rs110402, rs242924 which can form a so-called T-A-T haplotype which has been associated with protection from early life stress (as ascertained using the Childhood Trauma Questionnaire CTQ)).

The research team examined several populations of adults and, like many other studies, found that early life stress was associated with symptoms of depressive illness but, like only 1 previous study, found that the more T-A-T haplotypes a person has (0,1,or 2) the less likely they were to suffer these symptoms.

Indeed, the CRHR1 gene is an important player in a complex network of hormonal signals that regulate the way the body (specifically the hypothalamic pituitary adrenal axis) transduces the effects of stress.  So it seems quite reasonable to see that individual differences in ones ability to cope with stress might correlate with genotype here.   The replication seems like a major step forward in the ongoing paradigm shift from “genes as independent risk factors” to “genetic risk factors being dependent on certain environmental forces”.  The authors suggest that a the protective T-A-T haplotype might play a role in the consolidation of emotional memories and that CRHR1 T-A-T carriers might have a somewhat less-efficient emotional memory consolidation (sort of preventing disturbing memories from making it into long-term storage in the first place?) – which is a very intriguing and testable hypothesis.

On a more speculative note … consider the way in which the stress responsivity of a developing child is tied to its mother’s own stress responsivity.  Mom’s own secretion of CRH from the placenta is known to regulate gestational duration and thus the size, heartiness and stress responsiveness of her newborn.  The genetic variations are just passed along from generation to generation and provide some protection here and there in an intertwined cycle of life.

The flowers think they gave birth to seeds,
The shoots, they gave birth to the flowers,
And the plants, they gave birth to the shoots,
So do the seeds they gave birth to plants.
You think you gave birth to the child.
None thinks they are only entrances
For the life force that passes through.
A life is not born, it passes through.

anees akbar

Reblog this post [with Zemanta]

Read Full Post »

Twin studies have long suggested that genetic variation is a part of healthy and disordered mental life.  The problem however – some 10 years now since the full genome sequence era began – has been finding the actual genes that account for this heritability.

It sounds simple on paper – just collect lots of folks with disorder X and look at their genomes in reference to a demographically matched healthy control population.  Voila! whatever is different is a candidate for genetic risk.  Apparently, not so.

The missing heritability problem that clouds the birth of the personal genomes era refers to the baffling inability to find enough common genetic variants that can account for the genetic risk of an illness or disorder.

There are any number of reasons for this … (i) even as any given MZ and DZ twin pair shares genetic variants that predispose them toward the similar brains and mental states, it may be the case that different MZ and DZ pairs have different types of rare genetic variation thus diluting out any similar patterns of variation when large pools of cases and controls are compared …  (ii) also, the way that the environment interacts with common risk-promoting genetic variation may be quite different from person to person – making it hard to find variation that is similarly risk-promoting in large pools of cases and controls … and many others I’m sure.

One research group recently asked whether the type of common genetic variation(SNP vs. CNV) might inform the search for the missing heritability.  The authors of the recent paper, “Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls” [doi:10.1038/nature08979] looked at an alternative to the usual SNP markers – so called common copy number variants (CNVs) – and asked if these markers might provide a stronger accounting for genetic risk.  While a number of previous papers in the mental health field have indeed shown associations with CNVs, this massive study (some 3,432 CNV probes in 2000 or so cases and 3000 controls) did not reveal an association with bipolar disorder.  Furthermore, the team reports that common CNV variants are already in fairly strong linkage disequilibrium with common SNPs and so perhaps may not have reached any farther into the abyss of rare genetic variation than previous GWAS studies.

Disappointing perhaps, but a big step forward nonetheless!  What will the personal genomes era look like if we all have different forms of rare genetic variation?

Reblog this post [with Zemanta]

Read Full Post »

According to wikipedia, “Jean Philippe Arthur Dubuffet (July 31, 1901 – May 12, 1985) was one of the most famous French painters and sculptors of the second half of the 20th century.”  “He coined the term Art Brut (meaning “raw art,” often times referred to as ‘outsider art’) for art produced by non-professionals working outside aesthetic norms, such as art by psychiatric patients, prisoners, and children.”  From this interest, he amassed the Collection de l’Art Brut, a sizable collection of artwork, of which more than half, was painted by artists with schizophrenia.  One such painting that typifies this style is shown here, entitled, General view of the island Neveranger (1911) by Adolf Wolfe, a psychiatric patient.

Obviously, Wolfe was a gifted artist, despite whatever psychiatric diagnosis was suggested at the time.  Nevertheless, clinical psychiatrists might be quick to point out that such work reflects the presence of an underlying thought disorder (loss of abstraction ability, tangentiality, loose associations, derailment, thought blocking, overinclusive thinking, etc., etc.) – despite the undeniable aesthetic beauty in the work.  As an ardent fan of such art,  it made me wonder just how “well ordered” my own thoughts might be.  Given to being rather forgetful and distractable, I suspect my thinking process is just sufficiently well ordered to perform the routine tasks of day-to-day living, but perhaps not a whole lot more so.  Is this bad or good?  Who knows.

However, Krug et al., in their recent paper, “The effect of Neuregulin 1 on neural correlates of episodic memory encoding and retrieval” [doi:10.1016/j.neuroimage.2009.12.062] do note that the brains of unaffected relatives of persons with mental illness show subtle differences in various patterns of activation.  It seems that when individuals are using their brains to encode information for memory storage, unaffected relatives show greater activation in areas of the frontal cortex compared to unrelated subjects.  This so-called encoding process during episodic memory is very important for a healthy memory system and its dysfunction is correlated with thought disorders and other aspects of cognitive dysfunction.  Krug et al., proceed to explore this encoding process further and ask if a well-known schizophrenia risk variant (rs35753505 C vs. T) in the neuregulin-1 gene might underlie this phenomenon.  To do this, they asked 34 TT, 32 TC and 28 CC individuals to perform a memory (of faces) game whilst laying in an MRI scanner.

The team reports that there were indeed differences in brain activity during both the encoding (storage) and retrieval (recall) portions of the task – that were both correlated with genotype – and also in which the CC risk genotype was correlated with more (hyper-) activation.  Some of the brain areas that were hyperactivated during encoding and associated with CC genotype were the left middle frontal gyrus (BA 9), the bilateral fusiform gyrus and the left middle occipital gyrus (BA 19).  The left middle occipital gyrus showed gene associated-hyperactivation during recall.  So it seems, that healthy individuals can carry risk for mental illness and that their brains may actually function slightly differently.

As an ardent fan of Art Brut, I confess I hoped I would carry the CC genotype, but alas, my 23andme profile shows a boring TT genotype.  No wonder my artwork sucks.  More on NRG1 here.

Reblog this post [with Zemanta]

Read Full Post »

wotd044
Image by theloushe via Flickr

** PODCAST accompanies this post**

I have a little boy who loves to run and jump and scream and shout – a lot.  And by this, I mean running – at full speed and smashing his head into my gut,  jumping – off the couch onto my head,  screaming – spontaneous curses and R-rated body parts and bodily functions.  I hope you get the idea.  Is this normal? or (as I oft imagine) will I soon be sitting across the desk from a school psychologist pitching me the merits of an ADHD diagnosis and medication?

Of course, when it comes to behavior, there is not a distinct line one can cross from normal to abnormal.  Human behavior is complex, multi-dimensional and greatly interpreted through the lens of culture.  Our present culture is highly saturated by mass-marketing, making it easy to distort a person’s sense of “what’s normal” and create demand for consumer products that folks don’t really need (eg. psychiatric diagnoses? medications?).   Anyhow, its tough to know what’s normal.  This is an important issue to consider for those (mass-marketing hucksters?) who might be inclined to promote genetic data as “hard evidence” for illness, disorder or abnormality of some sort.

With this in mind, I really enjoyed a recent paper by Stollstorff et al., “Neural response to working memory load varies by dopamine transporter genotype in children” [doi:10.1016/j.neuroimage.2009.12.104] who asked how the brains of healthy children functioned, even though they carry a genotype that has been widely associated with the risk of ADHD.  Healthy children who carry genetic risk for ADHD. Hmm, might this be my boy?

The researchers looked at a 9- vs. 10-repeat VNTR polymorphism in the 3′-UTR of the dopamine transporter gene (DAT1).  This gene – which encodes the very protein that is targeted by so many ADHD medications – influences the re-uptake of dopamine from the synaptic cleft.  In the case of 10/10 genotypes, it seems that DAT1 is more highly expressed, thus leading to more re-uptake and hence less dopamine in the synaptic cleft.  Generally, dopamine is needed to enhance the signal/noise of neurotransmission, so – at the end of the day – the 10/10 genotype is considered less optimal than the 9/9-repeat genotype.  As noted by the researchers, the ADHD literature shows that the 10-repeat allele, not the 9-repeat, is most often associated with ADHD.

The research team asked these healthy children (typically developing children between 7 and 12 years of age) to perform a so-called N-back task which requires that children remember words that are presented to them one-at-a-time.  Each time a new word is presented, the children had to decide whether that word was the same as the previous word (1-back) or the previous, previous word (2-back).  Its a maddening task and places an extreme demand on neural circuits involved in active maintenance of information (frontal cortex) as well as inhibition of irrelevant information that occurs during updating (basal ganglia circuits).

As the DAT1 protein is widely expressed in the basal ganglia, the research team asked where in the brain was variation in the DAT1 (9- vs. 10-repeat) associated with neural activity?  and where was there a further difference between 1-back and 2-back?  Indeed, the team finds that brain activity in many regions of the basal ganglia (caudate, putamen, substantia nigra & subthalamic nucleus) were associated with genetic variation in DAT1.  Neat!  the gene may be exerting an influence on brain function (and behavior) in healthy children, even though they do not carry a diagnosis.  Certainly, genes are not destiny, even though they do influence brain and behavior.

What was cooler to me though, is the way the investigators examined the role of genetic variation in the 1-back (easy or low load condition) vs. 2-back (harder, high-load condition) tasks.  Their data shows that there was less of an effect of genotype on brain activation in the easy tasks.  Rather, only when the task was hard, did it become clear that the basal ganglia in the 10/10 carriers was lacking the necessary brain activation needed to perform the more difficult task.  Thus, the investigators reveal that the genetic risk may not be immediately apparent under conditions where heavy “loads” or demands are not placed on the brain.  Cognitive load matters when interpreting genetic data!

This result made me think that genes in the brain might be a lot like genes in muscles.  Individual differences in muscle strength are not associated with genotype when kids are lifting feathers.  Only when kids are actually training and using their muscles, might one start to see that some genetically advantaged kids have muscles that strengthen faster than others.  Does this mean there is a “weak muscle gene” – yes, perhaps.  But with the proper training regimen, children carrying such a “weak muscle gene” would be able to gain plenty of strength.

I guess its off to the mental and physical gyms for me and my son.

** PODCAST accompanies this post** also, here’s a link to the Vaidya lab!

Reblog this post [with Zemanta]

Read Full Post »

Recreated :File:Neuron-no labels2.png in Inksc...
Image via Wikipedia

The A-to-T SNP rs7794745 in the CNTNAP2 gene was found to be associated with increased risk of autism (see Arking et al., 2008).  Specifically, the TT genotype, found in about 15% of individuals, increases these folks’ risk by about 1.2-1.7-fold.  Sure enough, when I checked my 23andMe profile, I found that I’m one of these TT risk-bearing individuals.  Interesting, although not alarming since me and my kids are beyond the age where one typically worries about autism.  Still, one can wonder if such a risk factor might have exerted some influence on the development of my brain?

The recent paper by Tan et al., “Normal variation in fronto-occipital circuitry and cerebellar structure with an autism-associated polymorphism of CNTNAP2” [doi:10.1016/j.neuroimage.2010.02.018 ] suggests there may be subtle, but still profound influences of the TT genotype on brain development in healthy individuals.  According to the authors, “homozygotes for the risk allele showed significant reductions in grey and white matter volume and fractional anisotropy in several regions that have already been implicated in ASD, including the cerebellum, fusiform gyrus, occipital and frontal cortices. Male homozygotes for the risk alleles showed greater reductions in grey matter in the right frontal pole and in FA in the right rostral fronto-occipital fasciculus compared to their female counterparts who showed greater reductions in FA of the anterior thalamic radiation.”

The FA (fractional anisotropy – a measurement of white-matter or myelination) results are consistent with a role of CNTNAP2 in the establishment of synaptic contacts and other cell-cell contacts especially at Nodes of Ranvier – which are critical for proper function of white-matter tracts that support rapid, long-range neural transmission.  Indeed, more severe mutations in CNTNAP2  have been associated with cortical dysplasia and focal epilepsy (Strauss et al., 2006).

Subtle changes perhaps influencing long-range information flow in my brain – wow!

More on CNTNAP2 … its evolutionary history and role in language development.

Reblog this post [with Zemanta]

Read Full Post »

Older Posts »