Posts Tagged ‘Prefrontal cortex’

signaling (animated)
Image by Genista via Flickr

One thing I’ve learned doing yoga is that introspection – like the postures – takes a lot of practice.

Here’s a pointer to a great new science article on the basic brain biology of introspection, or “thinking about thinking”.  The article, Relating Introspective Accuracy to Individual Differences in Brain Structure by Fleming et al., describes experiments where participants had to (a) make a rather difficult perceptual observation and then (b) self-report how confident they were in that judgment.  From the introduction …

Our moment-to-moment judgments of the outside world are often subject to introspective interrogation. In this context, introspective or “metacognitive” sensitivity refers to the ability to discriminate correct from incorrect perceptual decisions, and its accuracy is essential for the appropriate guidance of decision-making and action.

… sounds a lot like the way people describe meditation as being an active or “aware” state where (a) very basic perceptual information (sounds, feelings, vibrations) are (b) seamlessly coupled, labeled or processed with more abstract and/or deeper thoughts.  As Thomas Metzinger suggests in his book, The Ego Tunnel, the ability to become “aware” of early sensory perceptions is an important aspect of understanding the so-called “real world” as opposed to the world that our ego, or conscious mind normally builds for us.  Metzinger points to Paul Churchland‘s ideas on “eliminative materialsm” as emphasizing the importance of (a) early sensory experience and its (b) coupling with introspective abilities.  Churchland’s ideas (from p53 in Metzinger’s book):

“I suggest then, that those of us who prize the flux and content of our subjective phenomenological experience need not view the advance of materialist neuroscience with fear and foreboding.” … “Quite the contrary.  The genuine arrival of a materialist kinematics and dynamics for psychological states and cognitive processes will constitute not a gloom in which our inner life is suppressed or eclipsed, but rather a dawning, in which its marvelous intricacies are finally revealed – most notably, if we apply [it] ourselves, in direct self-conscious introspection.”

Churchland’s notion of a revelation of our true inner lives (via an understanding of sensory processes) – loosely – reminds me of some of the ancient yogic notions of a gap between the “real” world and our everyday “mental” world.  These notions are a core of yoga spirituality.  As covered in-depth by Mircea Eliade in Yoga: Immortality and Freedom:

For Samkhya and Yoga the problem is clearly defined.  Since suffering has its origins in ignorance of “Spirit” – that is,  in confusing “Spirit” with psychomental states – emancipation can be obtained only if the confusion is abolished. (p14)   …   Yoga accepts God, but we shall see that Patanjali does not accord him very much importance.  The revelation is based on knowledge of the ultimate reality – that is, on an “awakening” in which object completely identifies itself with subject.  (The “Self” “”contemplates” itself;  it does not “think” itself, for thought is itself an experience and, as such, belongs to praktri.)(p29)

So it seems that both the ancient yogis and some modern scientists suggest that there is indeed a gap between the way the world really “is” and the way we “think” about it.  To close this gap, it may help to train ourselves to the difference between “contemplating” – which emphasizes basic sensory information (listening, feeling, etc.) – rather than just “thinking” about stuff.  I think this aspect of our mental life may be, in part, what Churchland is emphasizing and also is one of the most basic tenets of vipassana meditation.

Just focus on the basic sensory perceptions … live in this moment!

The brain scientists who performed the research on the relation of (a) basic sensory perceptual processes to (b) judgments of its accuracy used brain imaging to examine correlations in brain structure (gray matter volume and white-matter integrity) with performance on the (a) and (b) tasks and found a number of brain regions in the very front of the brain that were correlated with “introspective ability” (more on the science here).  I wonder if they were thinking of mediation when they wrote:

This raises the tantalizing possibility of being able to “train” metacognitive ability by harnessing underlying neural plasticity in the regions that we identify here.

I suppose a few old ascetic yogis out there might have chuckle at the thought of a western “training program” (just 10 minutes a day, no batteries required etc.) … methinks it takes practice – A LOT of practice!

Enhanced by Zemanta

Read Full Post »

Diagram to illustrate Minute Structure of the ...
Image via Wikipedia

For a great many reasons, research on mental illness is focused on the frontal cortex.  Its just a small part of the brain, and certainly, many things can go wrong in other places during brain/cognitive development, but, it remains a robust finding, that when the frontal cortex is not working well, individuals have difficulties in regulating thoughts and emotions.  Life is difficult enough to manage, let alone without a well functioning frontal cortex.  So its no surprise that many laboratories look very closely at how this region develops prenatally and during childhood.

One of the more powerful genetic methods is the analysis of gene expression via microarrays (here is a link to a tutorial on this technology).  When this technology is coupled with extremely careful histological analysis and dissection of cortical circuits in the frontal cortex, it begins to become possible to begin to link changes in gene expression with the physiological properties of specific cells and local circuits in the frontal cortex. The reason this is an exciting pursuit is because the mammalian neocortex is organized in a type of layered fashion wherein 6 major layers have different types of connectivity and functionality.  The developmental origins of this functional specificity are thought to lie in a process known as radial migration (here is a video of a neuron as it migrates radially and finds its place in the cortical hierarchy).  As cells are queued out of the ventricular zone, and begin their migration to the cortical surface, they are exposed to all sorts of growth factors and morphogens that help them differentiate and form the proper connectivities.  Thus, the genes that regulate this process are of keen interest to understanding normal and abnormal cognitive development.

Here’s an amazing example of this – 2 papers entitled, “Infragranular gene expression disturbances in the prefrontal cortex in schizophrenia: Signature of altered neural development?” [doi:10.1016/j.nbd.2009.12.013] and “Molecular markers distinguishing supragranular and infragranular layers in the human prefrontal cortex [doi:10.1111/j.1460-9568.2007.05396.x] both by Dominique Arion and colleagues.  In both papers, the authors ask, “what genes are differentially expressed in different layers of the cortex?”.  This is a powerful line of inquiry since the different layers of cortex are functionally different in terms of their connectivity.  For example, layers II-III (the so-called supragranular layers) are known to connect mainly to other cortical neurons – which is different functionally than layers V-VI (the so-called infragranular layers) that connect mainly to the striatum (layer V) and thalamus (layer VI).  Thus, if there are genes whose expression is unique to a layer, then one has a clue as to how that gene might contribute to normal/abnormal information processing.

The authors hail from a laboratory that is well-known for work over many years on fine-scaled histological analysis of the frontal cortex at the University of Pittsburgh and used a method called, laser capture microdissection, where post-mortem sections of human frontal cortex (area 46) were cut to separate the infragraular layer from the supragranular layer.  The mRNA from these tissue sections was then used for DNA microarray hybridization.  Various controls, replicate startegies and in-situ tissue hybridizations were then employed to validate the initial microarray results.

In first paper, the where the authors compare infra vs. supragranular layers, they report that 40 genes were more highly expressed in the supragranular layers (HOP, CUTL2 and MPPE1 were among the most enriched) and 29 genes were highly expressed in the infragranular layers (ZNF312, CHN2, HS3ST2 were among the most enriched).  Other differentially expressed genes included several that have previously been implicated in cortical layer formation such as RLN, TLX-NR2E1, SEMA3E, PCP4, SERPINE2, NR2F2/ARP1, PCDH8, WIF1, JAG1, MBP.  Amazing!! A handful of genes that seem to label subpopulations of projection neurons in the frontal cortex.  Polymorphic markers for these genes would surely be powerful tools for imaging-genetic studies on cognitive development.

In the second paper, the authors compare infra vs. supragranular gene expression in post-mortem brains from patients with schizophrenia and healthy matched controls. Using the same methods, the team reports both supra- and infragranular gene expression changes in schizophrenia (400 & 1200 differences respectively) – more than 70% of the differences appearing to be reductions in gene expression in schizophrenia. Interestingly, the team reports that the genes that were differentially expressed in the infragranular layers provided sufficient information to discriminate between cases and controls, whilst the gene expression differences in the supragranular layers did not.  More to the point, the team finds that 51 genes that were differentially expressed in infra- vs. supragranular expression were also differentially expressed in cases vs. controls  (many of these are also found to be associated in population genetic association studies of schiz vs. control as well!).  Thus, the team has identified layer (function) -specific genes that are associated with schizophrenia.  These genes, the ones enriched in the infragranular layers especially, seem to be at the crux of a poorly functioning frontal cortex.

The authors point to 3 such genes (SEMA3E, SEMA6D, SEMA3C) who happen to members of the same gene family – the semaphorin gene family.  This gene family is very important for the neuronal guidance (during radial migration), morphology, pruning and other processes where cell shape and position are regulated.  The authors propose that the semaphorins might act as “integrators” of various forms of wiring during development and in adulthood.  More broadly, the authors provide a framework to understand how the development of connectivity on the frontal cortex is regulated by genetic factors – indeed, many suspected genetic risk factors play a role in the developmental pathways the authors have focused on.

Reblog this post [with Zemanta]

Read Full Post »

DON’T tell the grant funding agencies, but, in at least one way, the effort to relate genetic variation to individual differences in cognitive function is a totally intractable waste of money.

Let’s say we ask a population of folks to perform a task – perhaps a word memory task – and then we use neuroimaging to identify the areas of the brain that (i) were associated with performance of the task, and (ii) were not only associated with performance, but were also associated with genetic variation in the population.  Indeed, there are already examples of just this type of “imaging-genetic” study in the literature.  Such studies form a crucial translational link in understanding how genes (whose biochemical functions are most often studied in animal models) relate to human brain function (usually studied with cognitive psychology). However, do these genes relate to just this task? What if subjects were recalling objects? or feelings?  What if subjects were recalling objects / experiences / feelings / etc. from their childhoods?  Of course, there are thousands of common cognitive operations one’s brain routinely performs, and, hence, thousands of experimental paradigms that could be used in such “imaging-genetic” gene association studies.  At more than $500/hour (some paradigms last up to 2 hours) in imaging costs, the translational genes-to-cognition endeavor could get expensive!

DO tell the grant funding agencies that this may not be a problem any longer.

The recent paper by Liu and colleagues “Prefrontal-Related Functional Connectivities within the Default Network Are Modulated by COMT val158met in Healthy Young Adults” [doi: 10.1523/jneurosci.3941-09.2010] suggests an approach that may simplify matters.  Their approach still involves genotyping (in this case for rs4680) and neuroimaging.  However, instead of performing a specific cognitive task, the team asks subjects to lay in the scanner – and do nothing.  That’s right – nothing – just lay still with eyes closed and just let the mind wander and not to think about anything in particular – for a mere 10 minutes.  Hunh?  What the heck can you learn from that?

It turns out that one can learn a lot.  This is because the neural pathways that the brain uses when you are actively doing something (a word recall task) are largely intact even when you are doing nothing.  Your brain does not “turn off” when you are laying still with your eyes closed and drifting in thought.  Rather, your brain slips into a kind of default pattern, described in studies of  “default networks” or “resting-state networks” where wide-ranging brain circuits remain dynamically coupled and actively exchange neural information.  One really great paper that describes these networks is a free-and-open article by Hagmann et al., “Mapping the Structural Core of Human Cerebral Cortex” [doi: 10.1371/journal.pbio.0060159] from which I’ve lifted their Figure 1 above.  The work by Hagmann et al., and others show that the brain has a sort of “connectome” where there are thousands of “connector hubs” or nodes that remain actively coupled (meaning that if one node fires, the other node will fire in a synchronized way) when the brain is at rest and when the brain is actively performing cognitive operations.  In a few studies, it seems that the strength of functional coupling in certain brain areas at rest is correlated (positively and negatively) with the activation of these areas when subjects are performing a specific task.

In the genetic study reported by Liu and colleagues, they found that genotype (N=57) at the dopaminergic COMT gene correlated with differences in the functional connectivity (synchronization of firing) of nodes in the prefrontal cortex.  This result is eerily similar to results found for a number of specific tasks (N-back, Wisconsin Card Sorting, Gambling, etc.) where COMT genotype was correlated with the differential activation of the frontal cortex during the task.  So it seems that one imaging paradigm (lay still and rest for 10 minutes) provided comparable insights to several lengthy (and diverse) activation tasks.  Perhaps this is the case. If so, might it provide a more direct route to linking genetic variation with cognitive function?

Liu and colleagues do not comment on this proposition directly nor do they seem to be over-interpreting their results in they way I have editorialized things here.  They very thoughtfully point out the ways in which the networks they’ve identified and similar and different to the published findings of others.  Certainly, this study and the other one like it are the first in what might be a promising new direction!

Reblog this post [with Zemanta]

Read Full Post »

Surgeon holding scalpel.
Image by bethd821 via Flickr

Whether you are a carpenter, plumber, mechanic, electrician, surgeon or chef, your livelihood depends on a set of sturdy, reliable, well-honed, precision tools.  Similarly, neuroscientists depend on their electrodes, brain scanners, microscopes and more recently their genome sequencers.  This is because they are not just trying to dissect the brain – the physical organ – but also the psychological one.  As the billions of neurons connected by trillions of synapses process electrical impulses – a kind of neural information – it is the great endeavor of cognitive-molecular-neuro-psychology (or whatever you wish to call the art) to figure out how all of those neurons and connections come into being and how they process information in ways that lead to your personality, self-image, hopes, dreams, memories and the other wonderful aspects of your mental life.  How and why does information flow through the brain in the way it does? and how and why does it do so in different ways for different people? Some, for instance, have informally related Sigmund Freud‘s models of mental structure to a kind of plumbing wherein psychic energy was routed (or misrouted) through different structural aspects of the mind (pipes as it were).  Perhaps such a model was fitting for the great industrial era in which he lived – but perhaps not in today’s highly information-based, inter-connected and network-oriented era.  If our understanding of mental life is a product of our tools, then perhaps we should be sure that our modern tools are up to the job.

One recent paper reminded me of how important it is to double check the accuracy and precision of one’s tools was the research article, “Quantifying the heritability of task-related brain activation and performance during the N-back working memory task: A twin fMRI study” [doi:10.1016/j.biopsycho.2008.03.006] by Blokland et al..  In this report, the team summarizes the results of measurments of the brain activity – not structure – but rather activity as measured by their chosen tool, the MRI scanner.  This research team, based in UCLA and known as one of the best in the field, asks whether the so-called BOLD response (an indirect measure of neural activity) shows greater concordance in identical (monozygotic) vs. fraternal (dizygotic) twins.  To generate brain activity, the research team asked the subjects to perform a task called an N-back  workng memory task, which entails having to remember something that happend “N” times ago (click here for further explanation of N-back task or play it on your iphone).  If you’ve done this, you’ll know that its hard – maddeningly so – and it requires a lot of concentration, which, the researchers were counting on to generate activity in the prefrontal cortex.

After looking at the brain activity patterns of some 29 MZ pairs and 31 DZ pairs, the team asked if the patterns of brain activity in the lateral frontal cortex were more similar in the MZ pairs vs. the DZ pairs.  If so, then it would suggest that the scanning technology (measurement of the BOLD response) is sufficiently reliable and precise enough to detect the fraction of individual differences in brain activty that arise from additive genetic variation.  If one actually had such super-precise tool, then one could begin to dissect and tease apart aspects of human cognition that are regulated by individual genetic variation – a very super-precise and amazing tool – that might allow us to understand mental life in biologically-based terms (and not Freud’s plumbingesque analogies).  If only such a tool existed! Somewhat amazingly, the scanning tools did seem to be able to detect differences between the BOLD response correlations of MZ pairs vs. DZ pairs.  The BOLD response correlations were greater for MZ vs. DZ in the middle frontal gyrus, angular gyrus, supramarginal gyrus when activity for the 2-back task was compared to the 0-back task.  The team were cautious to extend these findings too far, since the standard deviations are large and the estimates of heritability for the BOLD response are rather low (11-36%), but, overall, the team suggests that the ability to use the fMRI methods in conjunction with genetic markers shows future promise.

Meanwhile, the literature of so-called “imaging-genetic” findings begins to grow in the literature.  I hope the tools are reliable and trustworthy enough to justify conclusions and lessons about human genetic variation and its role in mental life.  Will certainly keep this cautionary report in mind as I report on the cognitive genetics literature in the future.

Reblog this post [with Zemanta]

Read Full Post »