Archive for the ‘Substantia nigra’ Category

Mitochondrial damage is associated with premature aging in the body and related disorders such as Parkinson’s Disease in the brain.  If you want to grow old and healthy … be nice to your mitochondria … eat healthy foods and exercise.

When mitochondria are damaged, cells can use proteolysis to clean them out, but when this cleaning out process fails … trouble ensues.   PINK1 plays a role on the clearance of damaged mitochondria as revealed by Dr. Derek P. Narendra and colleagues: PINK1 Is Selectively Stabilized on Impaired Mitochondria to Activate Parkin

Since neurons in the Substantia Nigra are postmitotic, any mitochondrial damage they acquire could accumulate over an organism’s lifetime, leading to progressive mitochondrial dysfunction—including increased oxidative stress, decreased calcium buffering capacity, loss of ATP, and, eventually, cell death—unless quality control processes eliminate the damaged mitochondria.

The findings we report in this paper suggest a new model in which PINK1 and Parkin together sense mitochondria in distress and selectively target them for degradation. In this pathway, PINK1 acts as a flag that accumulates on dysfunctional mitochondria and then signals to Parkin, which tags these mitochondria for destruction. Since disease-causing mutations in PINK1 or Parkin disrupt this pathway, patients with these mutations may not be able to clean up their damaged mitochondria, leading to the neuronal damage typical of parkinsonism.

Dr. Terry Wahls has some very inspiring experiences to share on the topic of mitochondrial care.

Read Full Post »

As a big fan of black and white photography, I’m intrigued by the concept of “Splitting” or so-called “black and white” thinking.  It’s something we all do to different degrees … when we avoid dealing with the “shades of gray” and group things in our life into “all good” or “all bad” groups.

Psychologists have considered this cognitive tendency to be a normal part of cognitive development (eg. good guys vs. bad guys), a response to stress, and also a part of various psychopathologies (funny, how psychiatrists have a tendency to group us into the “normal” and “abnormal”, huh?).

Is there anything wrong with seeing the world in black and white?  Perhaps, if you label mildly annoying people as “bad”, you’ll soon have no friends … but otherwise, I’m not sure.  Simplicity can be soothing.

I mean, our brains have a strong tendency to work at the extremes … for example, when it comes to cognition and movement.  We’re wired with so-called striatonigral (Go) and striatopallidal (NoGo) neural pathways that are engaged when cognition is transduced into action.  In the primal world of our ancestors, we didn’t survive very long if we danced around fretfully pondering the costs and benefits of running, or not running, from saber tooth tigers!  So, it’s no surprise, that we’re inherently uncomfortable in the wishy-washy, indecisive, muddling middle ground when making a decision.  We want to “go” or “freeze”, “do it” or “don’t”, “good” or “bad” … just make a f**king decision already.

Here’s a link to some current research on the “Go” and “NoGo” brain systems … and their genetic underpinnings (eg. the DRD2 protein is active when we are flummoxed with uncertainty which keeps us lingering in the NoGo state). Hey, our genome got us here … in one piece … it helped us stay alive … that’s not necessarily a bad thing.

thanks for the pic amadeus

Read Full Post »

Image by theloushe via Flickr

** PODCAST accompanies this post**

I have a little boy who loves to run and jump and scream and shout – a lot.  And by this, I mean running – at full speed and smashing his head into my gut,  jumping – off the couch onto my head,  screaming – spontaneous curses and R-rated body parts and bodily functions.  I hope you get the idea.  Is this normal? or (as I oft imagine) will I soon be sitting across the desk from a school psychologist pitching me the merits of an ADHD diagnosis and medication?

Of course, when it comes to behavior, there is not a distinct line one can cross from normal to abnormal.  Human behavior is complex, multi-dimensional and greatly interpreted through the lens of culture.  Our present culture is highly saturated by mass-marketing, making it easy to distort a person’s sense of “what’s normal” and create demand for consumer products that folks don’t really need (eg. psychiatric diagnoses? medications?).   Anyhow, its tough to know what’s normal.  This is an important issue to consider for those (mass-marketing hucksters?) who might be inclined to promote genetic data as “hard evidence” for illness, disorder or abnormality of some sort.

With this in mind, I really enjoyed a recent paper by Stollstorff et al., “Neural response to working memory load varies by dopamine transporter genotype in children” [doi:10.1016/j.neuroimage.2009.12.104] who asked how the brains of healthy children functioned, even though they carry a genotype that has been widely associated with the risk of ADHD.  Healthy children who carry genetic risk for ADHD. Hmm, might this be my boy?

The researchers looked at a 9- vs. 10-repeat VNTR polymorphism in the 3′-UTR of the dopamine transporter gene (DAT1).  This gene – which encodes the very protein that is targeted by so many ADHD medications – influences the re-uptake of dopamine from the synaptic cleft.  In the case of 10/10 genotypes, it seems that DAT1 is more highly expressed, thus leading to more re-uptake and hence less dopamine in the synaptic cleft.  Generally, dopamine is needed to enhance the signal/noise of neurotransmission, so – at the end of the day – the 10/10 genotype is considered less optimal than the 9/9-repeat genotype.  As noted by the researchers, the ADHD literature shows that the 10-repeat allele, not the 9-repeat, is most often associated with ADHD.

The research team asked these healthy children (typically developing children between 7 and 12 years of age) to perform a so-called N-back task which requires that children remember words that are presented to them one-at-a-time.  Each time a new word is presented, the children had to decide whether that word was the same as the previous word (1-back) or the previous, previous word (2-back).  Its a maddening task and places an extreme demand on neural circuits involved in active maintenance of information (frontal cortex) as well as inhibition of irrelevant information that occurs during updating (basal ganglia circuits).

As the DAT1 protein is widely expressed in the basal ganglia, the research team asked where in the brain was variation in the DAT1 (9- vs. 10-repeat) associated with neural activity?  and where was there a further difference between 1-back and 2-back?  Indeed, the team finds that brain activity in many regions of the basal ganglia (caudate, putamen, substantia nigra & subthalamic nucleus) were associated with genetic variation in DAT1.  Neat!  the gene may be exerting an influence on brain function (and behavior) in healthy children, even though they do not carry a diagnosis.  Certainly, genes are not destiny, even though they do influence brain and behavior.

What was cooler to me though, is the way the investigators examined the role of genetic variation in the 1-back (easy or low load condition) vs. 2-back (harder, high-load condition) tasks.  Their data shows that there was less of an effect of genotype on brain activation in the easy tasks.  Rather, only when the task was hard, did it become clear that the basal ganglia in the 10/10 carriers was lacking the necessary brain activation needed to perform the more difficult task.  Thus, the investigators reveal that the genetic risk may not be immediately apparent under conditions where heavy “loads” or demands are not placed on the brain.  Cognitive load matters when interpreting genetic data!

This result made me think that genes in the brain might be a lot like genes in muscles.  Individual differences in muscle strength are not associated with genotype when kids are lifting feathers.  Only when kids are actually training and using their muscles, might one start to see that some genetically advantaged kids have muscles that strengthen faster than others.  Does this mean there is a “weak muscle gene” – yes, perhaps.  But with the proper training regimen, children carrying such a “weak muscle gene” would be able to gain plenty of strength.

I guess its off to the mental and physical gyms for me and my son.

** PODCAST accompanies this post** also, here’s a link to the Vaidya lab!

Reblog this post [with Zemanta]

Read Full Post »