Feeds:
Posts
Comments

Posts Tagged ‘Rett Syndrome’

remember a day before today
Image by DerrickT via Flickr

Most cells in your adult body are “terminally differentiated” – meaning that they have developed from stem cells into the final liver, or heart, or muscle or endothelial cell that they were meant to be.  From that point onward, cells are able to “remember” to stay in this final state – in part – via stable patterns of DNA methylation that reinforce the regulation of “the end state” of gene expression for that cell.  As evidence for this role of DNA methylation, it has been observed that levels of DNA methyl transferase (DNMT) decline when cells are fully differentiated and thus, cannot modify or disrupt their patterns of methylation.

NOT the case in the brain! Even though neurons in the adult brain are fully differentiated, levels of methyl transferases – DO NOT decline.  Why not? Afterall, we wouldn’t want our neurons to turn into liver cells, or big toe cells, would we?

One hypothesis, suggested by David Sweatt and colleagues is that neurons have more important things to “remember”.   They suggest in their fee and open research article, “Evidence That DNA (Cytosine-5) Methyltransferase Regulates Synaptic Plasticity in the Hippocampus” [doi: 10.1074/jbc.M511767200] that:

DNA methylation could have lasting effects on neuronal gene expression and overall functional state. We hypothesize that direct modification of DNA, in the form of DNA (cytosine-5) methylation, is another epigenetic mechanism for long term information storage in the nervous system.

By measuring methylated vs. unmethylated DNA in the promoter of the reelin and BDNF genes and relating this to electrophysiological measures of synaptic plasticity, the research team finds correlations between methylation status and synaptic plasticity.  More specifically, they find that zebularine (an inhibitor of DNMT) CAN block long-term potentiation (LTP), but NOT block baseline synaptic transmission nor the ability of synapses to fire in a theta-burst pattern (needed to induce LTP).

This suggests that the epigenetic machinery used for DNA methylation may have a role in the formation of cellular memory – but not in the same sense as in other cells in the body – where cells remember to remain in a terminally differentiated state.

In the brain, this epigenetic machinery may help cells remember stuff that’s more germane to brain function … you know … our memories and stuff.

Enhanced by Zemanta

Read Full Post »

Summer, Brody and Audric Hug
Image by cobalt123 via Flickr

If you have a minute, check out this “Autism Sensory Overload Simulation” video to get a feel for the perceptual difficulties experienced by people with autism spectrum disorders.  A recent article, “Critical Period Plasticity Is Disrupted in the Barrel Cortex of Fmr1 Knockout Mice” [doi: 10.1016/j.neuron.2010.01.024] provides some clues to the cellular mechanisms that are involved in this phenomenon.  The authors examined the developing somatosensory cortex in lab mice who carry a mutation in a gene called FMR1.  The normal function of this gene is to help synapses mature and optimize their strength through a process known as activity-dependent plasticity.  This a kind of “use-it-or-lose-it” neural activity that is important when you are practicing and practicing to learn something new – say, like riding a bike, or learning a new language.  Improvements in performance that come from “using” the circuits in the brain are correlated with optimized synaptic connections – via a complex set of biochemical reactions (eg. AMPA receptor trafficking).

When FMR1 is not functioning, neuronal connections (in this case, synapses that connect the thalamus to the somatosensory cortex) cannot mature and develop properly.  This wreaks havoc in the developing brain where maturation can occur in successive critical periods – where the maturation of one circuit is needed to ensure the subsequent development of another.  Hence, the authors suggest, the type of sensory overload reported in the autism spectrum disorders may be related to a similar type of developmental anomaly in the somatosensory cortex.

Reblog this post [with Zemanta]

Read Full Post »

Some quick sketches that might help put the fast-growing epigenetics and cognitive development literature into context.  Visit the University of Utah’s Epigenetics training site for more background!

The genome is just the A,G,T,C bases that encode proteins and other mRNA molecules.  The “epi”genome are various modification to the DNA – such as methylation (at C residues) – and acetylation of histone proteins.   These changes help the DNA form various secondary and tertiary structures that can facilitate or block the interaction of DNA with the transcriptional machinery.

When DNA is highly methylated, it generally is less accessible for transcription and hence gene expression is reduced.  When histone proteins (purple blobs that help DNA coil into a compact shape) are acetylated, the DNA is much more accessible and gene expression goes up.

We know that proper epigenetic regulation is critical for cognitive development because mutations in MeCP2 – a protein that binds to methylated C residues – leads to Rett syndrome.  MeCP2 is normally responsible for binding to methylated DNA and recruiting histone de-acetylases (HDACs) to help DNA coil and condense into a closed form that is inaccessible for gene expression (related post here).

When DNA is accessible for gene expression, then it appears that – during brain development – there are relatively more synaptic spines produced (related post here).  Is this a good thing? Rett syndrome would suggest that – NO – too many synaptic spines and too much excitatory activity during brain development may not be optimal.  Neither is too little excitatory (too much inhibitory) activity and too few synaptic spines.  It is likely that you need just the right balance (related post here). Some have argued (here) that autism & schizophrenia are consequences of too many & too few synapses during development.

The sketch above illustrates a theoretical conjecture – not a scenario that has been verified by extensive scientific study. It tries to explain why epigenetic effects can, in practice, be difficult to disentangle from true (changes in the A,G,T,C sequence) genetic effects.  This is because – for one reason – a mother’s experience (extreme stress, malnutrition, chemical toxins) can – based on some evidence – exert an effect on the methylation of her child’s genome.  Keep in mind, that methylation is normal and widespread throughout the genome during development.  However, in this scenario, if the daughter’s behavior or physiology were to be influenced by such methylation, then she could, in theory, when reaching reproductive age, expose her developing child to an environment that leads to altered methylation (shown here of the grandaughter’s genome).  Thus, an epigenetic change would look much like there is a genetic variant being passed from one generation to the next, but such a genetic variant need not exist (related post here, here) – as its an epigenetic phenomenon.  Genes such as BDNF have been the focus of many genetic/epigenetic studies (here, here) – however, much, much more work remains to determine and understand just how much stress/malnutrition/toxin exposure is enough to cause such multi-generational effects.  Disentangling the interaction of genetics with the environment (and its influence on the epigenome) is a complex task, and it is very difficult to prove the conjecture/model above, so be sure to read the literature and popular press on these topics carefully.

Reblog this post [with Zemanta]

Read Full Post »

We are all familiar with the notion that genes are NOT destiny and that the development of an individual’s mind and body occur in a manner that is sensitive to the environment (e.g. children who eat lots of healthy food grow bigger and stronger than those who have little or no access to food).  In the case of the brain, one of the ways in which the environment gets factored into development – is via so-called “sensitive periods” where certain parts of the brain transiently rely on sensory experience in order to develop.  Children born with cataracts, for example, will have much better vision if the cataracts are removed in the first few weeks of life rather than later on.  This is because the human visual system has a “sensitive period” early in development where it is extra-sensitive to visual input and, after which, the function and connectivity of various parts of the system is – somewhat permanently – established for the rest of the person’s life.  Hence, if there is little visual input (cataracts) during the sensitive period, then the visual system is somewhat permanently unable to process visual information – even if the cataracts are subsequently removed.  (To learn more about this topic, visit Pawan Sinha’s lab at M.I.T and his Project Prakash intervention study on childhood blindness.)

What the heck is an “in”sensitive period then?   Well, whereas visual input is clearly a “good thing” for the sensitive period of visual development, perhaps some inputs are “bad” and it may be useful to shield or protect the brain from exposure.  Maybe some environmental inputs are “bad” and one would not want the developing brain to be exposed to them and say, “OK, this (bad stuff) is normal“.  As a parent, I am constantly telling my children that the traffic-filled street is a “bad place” and, like all parents, I would not want my children to think that it was OK to wander into the street.  Clearly, I want my child to recognize the car-filled street as a “bad thing”.

In the developing brain, it turns out that there are some “bad things” that one would NOT like (the brain) to get accustomed to.  Long-term exposure to glucocorticoids is one example – well-known to cause a type of neuronal remodelling in the hippocampus, that is associated with poor cognitive performance (visit Bruce McEwen’s lab at Rockefeller University to learn more about this).  Perhaps an “in”sensitive period – where the brain is insensitive to glucocorticoids – is one way to teach the brain that glucocorticoids are “bad” and DO NOT get too familiar with them (such a period does actually occur during early post-natal mammalian development).  Of course, we do need our brains to mount an acute stress response, if and when, we are being threatened, but it is also very important that the brain learn to TURN-OFF the acute stress response when the threat has passed – an extensive literature on the deleterious effects of chronic exposure to stress bears this out.  Hence, the brain needs to learn to recognize the flow of glucocorticoids as something that needs to be shut down.

OK, so our developing brain needs to learn what/who is “good vs. bad”.  Perhaps sensitive and insensitive periods help to reinforce this learning – and also – to cement learning into the system in a sort of permanent way (I’m really not sure if this is the consensus view, but I’ll try and podcast interview some of the experts here asap).  In any case, in the case of the visual system, it is clear that the lack of visual input during the sensitive period has long lasting consequences.  In the case of the stress response, it is also clear that if there is untoward stress early in development, one can be (somewhat) destined to endure a lifetime of emotional difficulty.  Previous posts here, here, here cover research on behavioral/genomic correlates of early life stress.

Genes meet environment in the epigenome during sensitive and insensitive periods?

As stated at the outset – genes are not destiny.  The DNA cannot encode a system that knows who/what is good vs. bad, but rather can only encode a system of molecular parts that can assemble to learn these contingencies on the fly.  During sensitive periods in the visual system, cells in the visual system are more active and fire more profusely during the sensitive period. This extra firing leads to changes in gene expression in ways that (somewhat) permanently set the connectivity, strength and sensitivity of visual synapses.  The expression of neuroligins, neurexins, integrins and all manner of extracellular proteins that stabilize synaptic connections are well-known tagets of activity-induced gene expression.  Hence the environment “interacts” with the genome via neuronal firing which induces gene expression which – in turn – feeds back and modulates neuronal firing.  Environment –> neuronal firing –> gene expression –> modified neuronal firing.  OK.

Similarly, in the stress response system, the environment induces changes in the firing of cells in the hypothalamus which leads (through a series of intermediates) to the release of glucocorticoids.  Genes induced during the firing of hypothalamic cells and by the release of glucocorticoid can modify the organism’s subsequent response to stressful events.  Environment –> neuronal firing –> gene expression –> modified neuronal firing.  OK.

Digging deeper into the mechanism by which neuronal firing induces gene expression, we find an interesting twist.   Certainly there is a well-studied mechanism wherein neuronal firing causes Ca++ release which activates gene expression of neuroligins, neurexins, integrins and all manner of extracellular proteins that stabilize synaptic connections – for many decades.  There is another mechanism that can permanently mark certain genes and alter their levels of expression – in a long-lasting manner.  These are so-called epigenetic mechanisms such as DNA methylation and acetylation.  As covered here and here, for instance, Michael Meaney’s lab has shown that DNA CpG methylation of various genes can vary in response to early-life stress and/or maternal care. In some cases, females who were poorly cared for, may, in turn, be rather lousy mothers themselves as a consequence of these epigenetic markings.

A new research article, “Dynamic DNA methylation programs persistent adverse effects of early-life stress” by Chris Murgatroyd and colleagues [doi:10.1038/nn.2436] explores these mechanisms in great detail.  The team explored the expression of the arginine vasopressin (AVP) peptide – a gene which is important for healthy social interaction and social-stress responsivity.  Among many other interesting results, the team reports that early life stress (using a mouse model) leads to lower levels of methylation in the 3rd CpG island which is located downstream in a distal gene-expression-enhancer region.  In short, more early-life stress was correlated with less methylation, more AVP expression which is known to potentiate the release of glucocorticoids (a bad thing).   The team reports that the methyl binding MeCP2 protein, encoded by the gene that underlies Rett syndrome, acts as a repressor of AVP expression – which would normally be a good thing since it would keep AVP levels (and hence glucocorticoid levels) down.  But unfortunately, early-life stress removes the very methyl groups to which MeCP2 binds and also the team reports that parvocelluar neuronal depolarization leads to phosphorylation (on serine residue #438) of MeCP2 – a form of MeCP2 that is less accessible to its targets.  So, in  a manner similar to other examples, early life stress can have long-lasting effects on gene expression via an epigenetic mechanism – and disables an otherwise protective mechanism that would shield the organism from the effects of stress.  Much like in the case of Rett syndrome (as covered here) it seems that when MeCP2 is bound – then it silences gene expression – which would seem to be a good thing when it comes to the case of AVP.

So who puts these epigenetic marks on chromosomes and why?

I’ll try and explore this further in the weeks ahead.  One intriguing idea about why methylation has been co-opted among mammals, has to do with the idea of parent-offspring conflict.  According to David Haig, one of the experts on this topic, males have various incentives to cause their offspring to be large and fast growing, while females have incentive to combat the genomic tricks that males use, and to keep their offspring smaller and more manageable in size.  The literature clearly show that genes that are marked or methylated by fathers (paternally imprinted genes) tend to be growth promoting genes and that maternally imprinted genes tend to be growth inhibitors.  One might imagine that maternally methylated genes might have an impact on maternal care as well.

Lastly, the growth promoting/inhibiting effects of paternal/maternal genes and gene markings is now starting to be discussed somewhat in the context of autism/schizophrenia which have have been associated with synaptic under-/over-growth, respectively.

Building a brain is already tough enough – but to have to do it amidst an eons-old battle between maternal and paternal genomes.  Sheesh!  More on this to come.

Reblog this post [with Zemanta]

Read Full Post »

creb1According to Joseph LeDoux, “One of the most important contributions of modern neuroscience has been to show that the nature/nurture debate operates around a false dichotomy: the assumption that biology, on one hand, and lived experience, on the other, affect us in fundamentally different ways” (ref).  Indeed.  While I know not where the current debate stands, I’d like to point to a fantastic example of just how inextricably linked the genome is to the environment.  In their recent paper, “A Biological Function for the Neuronal Activity-Dependent Component of Bdnf Transcription in the Development of Cortical Inhibition” [doi:10.1016/j.neuron.2008.09.024]  Hong et al., ask what happens when you take away the ability of a given gene to respond to the environment.  This is not a traditional “knockout” experiment – where the gene is inactivated from the moment of conception onwards – but rather a much more subtle type of experimental manipulation.  What happens when you prevent nurture from exerting an effect on gene expression?

The team focused on the BDNF gene whose transcription can be initiated from any one of eight promoter sites (I-XIII).  These sites vary in activity depending on the phase of development and/or the tissue or type of cell – all of which make for a complex set of instructions able to turn the BDNF gene on and off in precise developmental and/or tissue-specific ways.  In the case of promoter IV, it appears to be triggered in the cortex in response to Ca++ release that occurs when neurons are firing – a phenomena called, “neuronal activity dependent transcription” – a top example of how the environment can influence gene expression.  Seeing as how BDNF promoter IV is important for this type of environment-induced gene expression, the team asked what happens when you remove this particular promoter?

To do this, the team constructed – keep in mind that these are – mice that contain mutations in several of the Calcium (Ca++) response elements in the promoter IV region.  They introduced point mutations so that the Ca++ sensitive protein CREB could not bind to the promoter and activate gene expression.  OK, so what happens?

Firstly, the team reports that the mutant mice are more or less indistinguishable from controls in appearance, gait, growth rate, brain size and can also reproduce and transmit the mutations.  WOW! Is that one strike AGAINST nurture? The team then shows that BDNF levels are more than 50% reduced in cultured neurons, but that levels of other immediate early genes are NOT affected (as expected).  In living animals, the effects were similar when they asked how much gene expression occurs in the sensory cortex when animals are exposed to light (after an extended period of darkness).  OK, so there are few effects, so far, other than lower levels of nurture-induced BDNF expression – hmmm. Looking more closely however, the team found that the mutant mice generated lower levels of inhibitory neuron activity – as measured by the firing of miniature inhibitory postsynaptic currents.  Follow-on results showed that the total number of inhibitory neurons (parvalbumin and NPY + GABAergic cells) was no different than controls and so it would seem that the activity dependence of BDNF is important for the maintenance of inhibitory synapses.

Hence, the team has found that what “nurture” does (via the BDNF promoter IV in this case) is to exert an effect on the connectivity of inhibitory neurons.  Wow, thanks mother nurture!  Although it may seem like an obscure role for something as important as THE environment, the team points out that the relative balance of excitation-to-inhibition (yin-yang as covered here for Rett syndrome) is crucial for proper cognitive development.

To explore the notion of inhibory/excitation balance further, check out this (TED link) video lecture, where Michael Merzenich describes this imbalance as a “signal-to-noise” problem wherein some children’s brains are rather noisy (due to any number of genetic/environmental reasons – such as, perhaps, poorly maintained inhibitory connections).  This can make it harder to develop and function in life.  Perhaps someday, the genetic/environment research like that of Hong and colleagues will inform the rehabilitative strategies developed by Merzenich.

Reblog this post [with Zemanta]

Read Full Post »

rsrtlogoIt was a delight today to chat with Monica Coenraads, Executive Director of the Rett Syndrome Research Trust.  The RSRT has teamed up with a deeply focused world-class team of research scientists to translate the fruits of basic research on Rett syndrome into viable cures.   Whether you are a scientist, student or concerned family member, you will learn a lot from exploring the RSRT website, blog as well as this short video lectureJust by a strange, unanticipated coincidence, today marks the 10-year annivesary of the identification of MeCP2 as the underlying gene for Rett syndrome. Click here for prior blog posts on Rett syndrome.  (click here for podcast)

Reblog this post [with Zemanta]

Read Full Post »

Tao Te Ching
Image via Wikipedia

In previous posts, we have explored some of the basic molecular (de-repression of chromatin structure) and cellular (excess synaptogenesis) consequences of mutations in the MeCP2 gene – a.k.a the gene whose loss of function gives rise to Rett syndrome.  One of the more difficult aspects of understanding how a mutation in a lowly gene can give rise to changes in cognitive function is bridging a conceptual gap between biochemical functions of a gene product — to its effects on neural network structure and dynamics.  Sure, we can readily acknowledge that neural computations underlie our mental life and that these neurons are simply cells that link-up in special ways – but just what is it about the “connecting up part” that goes wrong during developmental disorders?

In a recent paper entitled, “Intact Long-Term Potentiation but Reduced Connectivity between Neocortical Layer 5 Pyramidal Neurons in a Mouse Model of Rett Syndrome” [doi: 10.1523/jneurosci.1019-09.2009] Vardhan Dani and Sacha Nelson explore this question in great detail.  They address the question by directly measuring the strength of neural connections between pyramidal cells in the somatosensory cortex of healthy and MeCP2 mutant mice.  In earlier reports, MeCP2 neurons showed weaker neurotransmission and weaker plasticity (an ability to change the strength of interconnection – often estimated by a property known as “long term potentiation” (LTP – see video)).   In this paper, the authors examined the connectivity of cortical cells using an electrophysiological method known as patch clamp recording and found that early in development, the LTP induction was comparable in healthy and MeCP2 mutant animals, and even so once the animals were old enough to show cognitive symptoms.  During these early stages of development, there were also no differences between baseline neurotransmission between cortical cells in normal and MeCP2 mice.  Hmmm – no differences? Yes, during the early stages of development, there were no differences between genetic groups – however – once the team examined later stages of development (4 weeks of age) it was apparent that the MeCP2 animals had weaker amplitudes of cortical-cortical excitatory neurotransmission.  Closer comparisons of when the baseline and LTP deficits occurred, suggested that the LTP deficits are secondary to baseline strength of neurotransmission and connectivity in the developing cortex in MeCP2 animals.

So it seems that MeCP2 can alter the excitatory connection strength of cortical cells.  In the discussion of the paper, the authors point out the importance of a proper balance of inhibition and excitation (yin and yang, if you will) in the construction or “connecting up part” of neural networks.  Just as Rett syndrome may arise due to such a problem in the proper linking-up of cells – who use their excitatory and inhibitory connections to establish balanced feedback loops – so too may other developmental disorders such as autism, Down’s syndrome, fragile X-linked mental retardation arise from an improper balance of inhibition and excitation.

Reblog this post [with Zemanta]

Read Full Post »

arinlloydCelebrities and politicians are known for their love of the spotlight.  “Me, me, me!”  are the words to get ahead by in our modern media circus.   As well, it can even be – in the unglamorous world of science – where, in characteristically geeky form, the conventional wisdom is to shout, “my hypothesis, my hypothesis, my hypothesis!”.  Once, for example, I had a grad school professor say she was not allowed by her department to teach about glial cells in her brain development class.  Another distinguished professor once told me, “don’t even bother sending a grant in,  if it is focused on white matter“.   No sir, it appears that modern neuroscience shall only focus on one main hypothesis – the neuron doctrine and not on the lowly support cells (astrocytes, oligodendrocytes & microglia) that, actually, make up more than 90% of the human brain.  Hmmm, who would have thought to find such a cult of neuronal celebrity in the halls of academia?

With this in mind, I really enjoyed the recent paper “Rett Syndrome Astrocytes Are Abnormal and Spread MeCP2 Deficiency through Gap Junctions” [doi:10.1523/jneurosci.0324-09.2009] by Maezawa and colleagues.  The authors point out several critical gaps in the literature – namely that the expression of MeCP2 (the gene that, when mutated, gives rise to Rett syndrome) in neurons does NOT account for all of the many facets of the syndrome.  For example, when MeCP2 is deleted only in neurons (in a mouse model), it results in a milder form of abnormal neural development than when deleted in all CNS cell types ( the full mouse syndrome: stereotypic forelimb motions, tremor, motor and social behavioral abnormalities, seizures, hypoactivity, anxiety-like behavior and learning/memory deficits).  Also, it is not possible to reverse or rescue these deficits when a functional version of MeCP2 is expressed under a neuron-specific promoter.  However, when re-expressed under its endogenous promoter – it is possible to rescue the syndrome (free access article).

The authors thus looked much more closely at the expression of MeCP2 and found that they could indeed visualize the expression of the MeCP2 protein in cultured ASTROCYTES – who are a very, very important type of support cell (just think of the personal secretary Lloyd to Ari Gold on the TV show “Entourage”).  The team then examined how astrocytes that lack 80% of the expression of MeCP2 might interact with neurons – the very cells they normally support with secretions of growth factors and cytokines.   It turns out that both normal and MeCP2-deficient neurons do not thrive when co-cultured with astrocytes that have weak MeCP2 expression.   The team reports that dendritic length is reduced after a day and also a fews days of co-culture,  suggesting that the MeCP2-deficient astrocytes are failing to provide the proper trophic support for their neuronal celebrity counterparts.  Short dendrites are generally considered a bad-thing since this would predict poorer connectivity, and poorer cognition across the brain.

Hence, it seems that the lowly astrocyte is far more important in understanding what goes wrong in Rett syndrome.  Ironically, in this case however, the celebrity status of the neuron remains untarnished as astrocytes can now be blamed for the consequences of MeCP2 mutations.  The authors suggest that treatment of Rett syndrome via astrocytes is a worthwhile avenue of investigation.  This new direction in the search for a cure will be an exciting story to follow!

Reblog this post [with Zemanta]

Read Full Post »

MECP2
Image via Wikipedia

The cognitive and emotional impairments in the autism spectrum disorders can be difficult for parents and siblings to understand and cope with.  Here are some graphics and videos that might assist in understanding how genetic mutations and epigenetic modifications can lead to various forms of social withdrawl commonly observed in the autism spectrum disorders in children.

In this post, the focus is just on the MecP2 gene – where mutations are known to give rise to Rett Syndrome – one of the autism spectrum disorders.  I’ll try and lay out some of the key steps in the typical bare-bones-link-infested-blogger-fashion – starting with mutations in the MecP2 gene.  Disclaimer: there are several fuzzy areas and leaps of faith in the points and mouse model evidence below, and there are many other genes associated with various aspects of autism spectrum disorders that may or may not work in this fashion.  Nevertheless, still it seems one can begin to pull a mechanistic thread from gene to social behavior Stay tuned for more on this topic.

1. The MecP2 gene encodes a protein that binds to 5-Methylcytosine – very simply – a regular cytosine reside with an extra methyl group added at position 5.  Look at the extra -CH3 group on the cytosine residue in the picture at right.  See?  That’s a 5-methylcyctosine residue – and it pairs in the DNA double helix with guanosine (G) in the same fashion as does the regular cyctosine reside (C). 5methC OK, now, mutations in the gene that encode the  MecP2 gene – such as those found at Arginine residue 133 and Serine residue 134 impair the ability of the protein to bind to these 5-Methylcyctosine residues.  bindingMecP2The figure at left illustrates this, and shows how the MecP2 protein lines up with the bulky yellow 5-Methylcytosine residues in the blue DNA double helix during binding.

2. When the MecP2 protein is bound to the methylated DNA, it serves as a binding site for another type of protein – an HDAC or histone deacetylase. The binding of MecP2 and HDAC (and other proteins (see p172 section 5.3 of this online bookChromatin Structure and Gene Expression“)).  The binding of the eponymously named HDAC’s leads to the “de-acetylation” of proteins known as histones.  The movie below illustrates how histone “de-acetylation” leads to the condensation of DNA structure and repression or shutting down of gene expression (when the DNA is tightly coiled, it is inaccessible to transcription factors).  Hence: DNA methylation leads (via MecP2, HDAC binding) to a repression on gene expression.


3. When mutated forms of MecP2 cannot bind, the net result is MORE acetylation and MORE gene expression. As covered previously here, this may not be a good thing during brain development since more gene expression can induce the formation of more synapses and – possibly – lead to neural networks that fail to grow and mature in the “normal” fashion. The figure at right toomanysynapsessuggests that neural networks with too many synapses may not be appropriately connected and may be locked-in to sub-optimal architectures.  Evidence for excessive synaptogenesis is abundant within the autism spectrum disorders.  Neuroligins – a class of genes that have been implicated in autism are known to function in cell & synaptic adhesion (open access review here), and can alter the balance of excitation/inhibition when mutated – which seems consistent with this heuristic model of neural networks that can be too adhesive or sticky.

4. Cognitive and social impairment can result from poor-functioning neural networks containing, but not limited to the amygdala. The normal development of neural networks containing the forntal cortex and amygdala are important for proper social and emotional function.  The last piece of the puzzle then would be to find evidence for developmental abnormalities in these networks and to show that such abnormalities mediate social and/or emotional function.  Such evidence is abundant.

Regarding the effects of MecP2 however, we can consider the work of Adachi et al., who were able to delete the MecP2 gene – just in the amygdala – of (albeit, an adult) mouse.  Doing so, led to the disruption of various emotional behaviors – BUT NOT – of various social interaction deficits that are observed when MecP2 is deleted in the entire forebrain.  This was the case also when the team infused HDAC inhibitors into the amygdala suggesting that loss of transcriptional repression in the adult amygdala may underlie the emotional impariments seen in some autism spectrum disorders.  Hence, such emotional impairments (anxiety etc.) might be treatable in adults (more on this result later and its implications for gene-therapy).

Whew!  Admittedly, the more you know – the more you don’t know.  True here, but still amazing to see the literature starting to interlink across human-genetic, mouse-genetic, human-functional-imaging levels of analysis. Hoping this rambling was helpful.

Reblog this post [with Zemanta]

Read Full Post »

Violinist marionette performs
Image by eugene via Flickr

The homunculus (argument) is a pesky problem in cognitive science – a little guy who might suddenly appear when you propose a mechanism for decision making, spontaneous action or forethought  etc. – and would take credit for the origination of the neural impulse.  While there are many mechanistic models of decision making that have slain the little bugger – by invoking competition between past experience and memory as the source of new thoughts and ideas – one must always tread lightly, I suppose, to be wary that cognitive mechanisms are based completely in neural properties devoid of a homuncular source.

Still, the human mind must begin somewhere.  After all, its just a ball of cells initially, and then a tube and then some more folds, layers, neurogenesis and neural migration  etc. before maturing – miraculously – into a child that one day looks at you and says, “momma” or “dada”.  How do these neural networks come into being?  Who or what guides their development toward that unforgettable, “momma (dada)” moment?  A somewhat homuncluar “genetic program” – whose instructions we can attribute to millions of years of natural selection?  Did early hominid babies say “momma (dada)?  Hmmm. Seems like we might be placing a lot of faith in the so-called “instructions” provided by the genome, but who am I to quibble.

On the other hand, you might find that the recent paper by Akhtar et al., “Histone Deacetylases 1 and 2 Form a Developmental Switch That Controls Excitatory Synapse Maturation and Function” [doi:10.1523/jneurosci.0097-09.2009] may change the way you think about cognitive development.  The team explores the function of two very important epigenetic regulators of gene expression – histone deacetylases 1,2 (HDAC1, HDAC2) on the functionality of synapses in early developing mice and mature animals.  By epigenetic, I refer to the role of these genes in regulating chromatin structure and not via direct, site-specific DNA binding.  The way the HDAC genes work is by de-acetylating – removing acetyl groups – thus removing a electrostatic repulsion of acetyl groups (negative charge) on histone proteins with the phosphate backbone of DNA (also a negative charge).  When the histone proteins carry such an acetyl group, they do NOT bind well to DNA (negative-negative charge repulsion) and the DNA molecule is more open and exposed to binding of transcription factors that activate gene expression.  Thus if one (as Akhtar do) turns off a de-acetylating HDAC gene, then the resulting animal has a genome that is more open and exposed to transcription factor binding and gene expression.  Less HDAC = more gene expression!

What were the effects on synaptic function?  To summarize, the team found that in early development (neonatal mouse hippocampal cells) cells where the HDAC1 or 2 genes were turned off (either through pharmacologic blockers or via partial deletion of the gene(s) via lentivirus introduction of Cre recombinase) had more synapses and more synaptic electrical activity than did hippocampal cells from control animals.  Keep in mind that the HDACs are located in the nucleus of the neuron and the synapses are far, far away.  Amazingly – they are under the control of an epigenetic regulator of gene expression;  hence, ahem, “epigenetic puppetmasters”.  In adult cells, the knockdown of HDACs did not show the same effects on synaptic formation and activity.  Rather the cells where HDAC2 was shut down showed less synaptic formation and activity (HDAC1 had no effect).  Again, it is amazing to see effects on synaptic function regulated at vast distances.  Neat!

The authors suggest that the epigenetic regulatory system of HDAC1 & 2 can serve to regulate the overall levels of synaptic formation during early cognitive development.  If I understand their comments in the discussion, this may be because, you don’t necessarily want to have too many active synapses during the formation of a neural network.   Might such networks might be prone to excitotoxic damage or perhaps to being locked-in to inefficient circuits?  The authors note that HDACs interact with MecP2, a gene associated with Rett Syndrome – a developmental disorder (in many ways similar to autism) where neural networks underlying cognitive development in children fail to progress to support higher, more flexible forms of cognition.  Surely the results of Akhtar et al., must be a key to understanding and treating these disorders.

Interestingly, here, the controller of these developmental phenotypes is not a “genetic program” but rather an epigenetic one, whose effects are wide-spread across the genome and heavily influenced by the environment.  So no need for an homunculus here.

Reblog this post [with Zemanta]

Read Full Post »