The recent paper, “Comparative genomics of autism and schizophrenia” by Bernard Crespi and colleagues provides a very exciting take on how genetic data can be mined to understand cognitive development and mental illness. Looking at genetic association data for autism and schizophrenia, the authors point out that 4 loci are associated with both schizophrenia and autism – however, with a particular twist. In the case of 1q21.1 and 22q11.21 it seems that genetic deletions are associated with schizophrenia while duplications at this locus are associated with autism. At 16p11.2 and 22q13.3 it seems that duplications are associated with schizophrenia and deletions are associated with autism. Thus both loci contain genes that regulate brain development such that too much (duplication) or too little (deletion) of these genes can cause brain development to go awry. The authors point to genes involved in cellular and synaptic growth for which loss-of-function in growth inhibition genes (which would cause overgrowth) have been associated with autism while loss-of-function in growth promoting genes (which would cause undergrowth) have been associated with schizophrenia. Certainly there is much evidence for overproduction of synapses in the autism-spectrum disorders and loss of synapses in schizophrenia. Crespi et al., [doi:10.1073/pnas.0906080106]
Other research covered (here, here) demonstrates the importance of the proper balance of excitatory and inhibitory signalling during cortical development.
Bipolar disorder drug has been approved by the FDA for treatment of schizophrenia: http://www.orderonlinedrugs.com/drug-news/2009/08/07/us-fda-supports-antipsychotic-once-monthly-invega-sustenna/