Feeds:
Posts
Comments

Posts Tagged ‘Autism spectrum’

Recreated :File:Neuron-no labels2.png in Inksc...
Image via Wikipedia

The A-to-T SNP rs7794745 in the CNTNAP2 gene was found to be associated with increased risk of autism (see Arking et al., 2008).  Specifically, the TT genotype, found in about 15% of individuals, increases these folks’ risk by about 1.2-1.7-fold.  Sure enough, when I checked my 23andMe profile, I found that I’m one of these TT risk-bearing individuals.  Interesting, although not alarming since me and my kids are beyond the age where one typically worries about autism.  Still, one can wonder if such a risk factor might have exerted some influence on the development of my brain?

The recent paper by Tan et al., “Normal variation in fronto-occipital circuitry and cerebellar structure with an autism-associated polymorphism of CNTNAP2” [doi:10.1016/j.neuroimage.2010.02.018 ] suggests there may be subtle, but still profound influences of the TT genotype on brain development in healthy individuals.  According to the authors, “homozygotes for the risk allele showed significant reductions in grey and white matter volume and fractional anisotropy in several regions that have already been implicated in ASD, including the cerebellum, fusiform gyrus, occipital and frontal cortices. Male homozygotes for the risk alleles showed greater reductions in grey matter in the right frontal pole and in FA in the right rostral fronto-occipital fasciculus compared to their female counterparts who showed greater reductions in FA of the anterior thalamic radiation.”

The FA (fractional anisotropy – a measurement of white-matter or myelination) results are consistent with a role of CNTNAP2 in the establishment of synaptic contacts and other cell-cell contacts especially at Nodes of Ranvier – which are critical for proper function of white-matter tracts that support rapid, long-range neural transmission.  Indeed, more severe mutations in CNTNAP2  have been associated with cortical dysplasia and focal epilepsy (Strauss et al., 2006).

Subtle changes perhaps influencing long-range information flow in my brain – wow!

More on CNTNAP2 … its evolutionary history and role in language development.

Reblog this post [with Zemanta]

Read Full Post »

Summer, Brody and Audric Hug
Image by cobalt123 via Flickr

If you have a minute, check out this “Autism Sensory Overload Simulation” video to get a feel for the perceptual difficulties experienced by people with autism spectrum disorders.  A recent article, “Critical Period Plasticity Is Disrupted in the Barrel Cortex of Fmr1 Knockout Mice” [doi: 10.1016/j.neuron.2010.01.024] provides some clues to the cellular mechanisms that are involved in this phenomenon.  The authors examined the developing somatosensory cortex in lab mice who carry a mutation in a gene called FMR1.  The normal function of this gene is to help synapses mature and optimize their strength through a process known as activity-dependent plasticity.  This a kind of “use-it-or-lose-it” neural activity that is important when you are practicing and practicing to learn something new – say, like riding a bike, or learning a new language.  Improvements in performance that come from “using” the circuits in the brain are correlated with optimized synaptic connections – via a complex set of biochemical reactions (eg. AMPA receptor trafficking).

When FMR1 is not functioning, neuronal connections (in this case, synapses that connect the thalamus to the somatosensory cortex) cannot mature and develop properly.  This wreaks havoc in the developing brain where maturation can occur in successive critical periods – where the maturation of one circuit is needed to ensure the subsequent development of another.  Hence, the authors suggest, the type of sensory overload reported in the autism spectrum disorders may be related to a similar type of developmental anomaly in the somatosensory cortex.

Reblog this post [with Zemanta]

Read Full Post »

The recent paper, “Comparative genomics of autism and schizophrenia” by Bernard Crespi and colleagues provides a very exciting take on how genetic data can be mined to understand cognitive development and mental illness.  Looking at genetic association data for autism and schizophrenia, the authors point out that 4 loci are associated with both schizophrenia and autism – however, with a particular twist.  In the case of 1q21.1 and 22q11.21 it seems that genetic deletions are associated with schizophrenia while duplications at this locus are associated with autism.  At 16p11.2 and 22q13.3  it seems that duplications are associated with schizophrenia and deletions are associated with autism.  Thus both loci contain genes that regulate brain development such that too much (duplication) or too little (deletion) of these genes can cause brain development to go awry.  The authors point to genes involved in cellular and synaptic growth for which loss-of-function in growth inhibition genes (which would cause overgrowth) have been associated with autism while loss-of-function in growth promoting genes (which would cause undergrowth) have been associated with schizophrenia.  Certainly there is much evidence for overproduction of synapses in the autism-spectrum disorders and loss of synapses in schizophrenia.  Crespi et al., [doi:10.1073/pnas.0906080106]

Other research covered (here, here) demonstrates the importance of the proper balance of excitatory and inhibitory signalling during cortical development.

Reblog this post [with Zemanta]

Read Full Post »

SfNneuroblogbadgeWhile most presentations at SfN cover brief snippets of research, yesterday it was a delight to hear the story of neurexins and neuroligins – the whole, decades worth of research, story – from Professor Thomas Sudhof, whose lab has been responsible for the purification and biochemical characterization of these proteins.  Without re-telling the tale here, a few neat highlights about these proteins who form a transynaptic bridge with neurexins on the pre-synaptic membrane binding to neuroligins on the post-synaptic membrane:
-neurexins were first purified using alpha-latrotoxin (a.k.a black widow venom!)

-there are thousands of spice variants of a single neurexin gene and these have rather specific affinities for different splice variants of neuroligins (how are these splicing events regulated to ensure the right pairs find each other?)

-the mere act of ectopic expression of neuroligins is sufficient induce the formation of synapses in neuronal cell lines – however this will not happen if the neuroligin is missing its neurexin binding domain.  Apparently, different neuroligin genes confer the formation of different types of inhibitory vs. excitatory synapses.

-interestingly, the deletion of any pair of the 3 (NL1,2,3) neuroligin genes has little effect – albeit for a few subtle social behavior phenotypes in mice.  Deletion of all 3 of the NL genes is lethal.

-In humans, mutations in neuroligins such as R87W and R451C are associated with autism spectrum disorder.  Apparently, these mutations do not fold properly and do not make it to the cell surface.

-The R451C mutation, when expressed in a mouse leads to more inhibitory synapses in the cortex and more excitatory synapses in the hippocampus.  The mice are BETTER able to learn/unlearn the water-maze paradigm but show subtle social affiliation phenotypes.

-There are a number of other mutations in genes that interact with the neurexins and neuroligins that are also associated with mental disability, suggesting that the proper regulation of synaptic organization and excitatory/inhibitory balance is a key aspect of optimal mental function.

Read Full Post »

MECP2
Image via Wikipedia

The cognitive and emotional impairments in the autism spectrum disorders can be difficult for parents and siblings to understand and cope with.  Here are some graphics and videos that might assist in understanding how genetic mutations and epigenetic modifications can lead to various forms of social withdrawl commonly observed in the autism spectrum disorders in children.

In this post, the focus is just on the MecP2 gene – where mutations are known to give rise to Rett Syndrome – one of the autism spectrum disorders.  I’ll try and lay out some of the key steps in the typical bare-bones-link-infested-blogger-fashion – starting with mutations in the MecP2 gene.  Disclaimer: there are several fuzzy areas and leaps of faith in the points and mouse model evidence below, and there are many other genes associated with various aspects of autism spectrum disorders that may or may not work in this fashion.  Nevertheless, still it seems one can begin to pull a mechanistic thread from gene to social behavior Stay tuned for more on this topic.

1. The MecP2 gene encodes a protein that binds to 5-Methylcytosine – very simply – a regular cytosine reside with an extra methyl group added at position 5.  Look at the extra -CH3 group on the cytosine residue in the picture at right.  See?  That’s a 5-methylcyctosine residue – and it pairs in the DNA double helix with guanosine (G) in the same fashion as does the regular cyctosine reside (C). 5methC OK, now, mutations in the gene that encode the  MecP2 gene – such as those found at Arginine residue 133 and Serine residue 134 impair the ability of the protein to bind to these 5-Methylcyctosine residues.  bindingMecP2The figure at left illustrates this, and shows how the MecP2 protein lines up with the bulky yellow 5-Methylcytosine residues in the blue DNA double helix during binding.

2. When the MecP2 protein is bound to the methylated DNA, it serves as a binding site for another type of protein – an HDAC or histone deacetylase. The binding of MecP2 and HDAC (and other proteins (see p172 section 5.3 of this online bookChromatin Structure and Gene Expression“)).  The binding of the eponymously named HDAC’s leads to the “de-acetylation” of proteins known as histones.  The movie below illustrates how histone “de-acetylation” leads to the condensation of DNA structure and repression or shutting down of gene expression (when the DNA is tightly coiled, it is inaccessible to transcription factors).  Hence: DNA methylation leads (via MecP2, HDAC binding) to a repression on gene expression.


3. When mutated forms of MecP2 cannot bind, the net result is MORE acetylation and MORE gene expression. As covered previously here, this may not be a good thing during brain development since more gene expression can induce the formation of more synapses and – possibly – lead to neural networks that fail to grow and mature in the “normal” fashion. The figure at right toomanysynapsessuggests that neural networks with too many synapses may not be appropriately connected and may be locked-in to sub-optimal architectures.  Evidence for excessive synaptogenesis is abundant within the autism spectrum disorders.  Neuroligins – a class of genes that have been implicated in autism are known to function in cell & synaptic adhesion (open access review here), and can alter the balance of excitation/inhibition when mutated – which seems consistent with this heuristic model of neural networks that can be too adhesive or sticky.

4. Cognitive and social impairment can result from poor-functioning neural networks containing, but not limited to the amygdala. The normal development of neural networks containing the forntal cortex and amygdala are important for proper social and emotional function.  The last piece of the puzzle then would be to find evidence for developmental abnormalities in these networks and to show that such abnormalities mediate social and/or emotional function.  Such evidence is abundant.

Regarding the effects of MecP2 however, we can consider the work of Adachi et al., who were able to delete the MecP2 gene – just in the amygdala – of (albeit, an adult) mouse.  Doing so, led to the disruption of various emotional behaviors – BUT NOT – of various social interaction deficits that are observed when MecP2 is deleted in the entire forebrain.  This was the case also when the team infused HDAC inhibitors into the amygdala suggesting that loss of transcriptional repression in the adult amygdala may underlie the emotional impariments seen in some autism spectrum disorders.  Hence, such emotional impairments (anxiety etc.) might be treatable in adults (more on this result later and its implications for gene-therapy).

Whew!  Admittedly, the more you know – the more you don’t know.  True here, but still amazing to see the literature starting to interlink across human-genetic, mouse-genetic, human-functional-imaging levels of analysis. Hoping this rambling was helpful.

Reblog this post [with Zemanta]

Read Full Post »