Feeds:
Posts
Comments

Archive for the ‘Orbitofrontal cortex’ Category

Young Maori man. Apparently (based on Flickr t...
Image via Wikipedia

Rare mutations that knock-out the function of monoamine oxidase a gene have long been known to give rise to developmental changes that increase the propensity of males to engage in aggressive behavior.  The effects of so-called natural variants – that may slightly reduce or increase the amount of activity of the MAOA protein – can be harder to understand since they are less-definitive and perhaps more easily masked or influenced by the environment and developmental mileu.  Nevertheless, the role of natural, common variation in the maoa gene and its relation to aggressive behavior in boys remains of interest – witness a news report today, “‘Warrior Gene’ Linked To Gang Membership, Weapon Use: FSU Study”.

Rather than debate the validity and merits of such sensational headlines, it may be more productive to understand how & why naturally occurring genetic variation might influence the development of the brain in a way that makes it more difficult for adolescents and adults to control their aggressive impulses.  Clearly, healthy males have a predisposition to act out moreso than females, which – while at odds with our modern societal norms – comes along with our evolutionary legacy and phylogenetic relationship to other primates and mammals where male aggression is the rule.  In this sense, the really exciting story, is not whether there is something amiss with schoolboys who carry certain genetic variants of maoa, but how such variants work over the course of normal brain development and why, in terms of our own evolutionary history, we carry such variants.

That male-male aggression can be a means to differentiate male fitness and – via sexual selection in females – reduce mutational load, has been widely shown across the sexually-reproducing biome.  Thus, while variants such as the high expression 4-repeat VNTR in maoa have likely been helpful, rather than hurtful, in the establishment and survival of our noble species, it may be a difficult task to prove such a proposition.  As Stephen Jay Gould once wrote, “Thus, we are presented with unproved and unprovable speculations about the adaptive and genetic basis of specific human behaviors: why some (or all) people are aggressive, xenophobic, religious, acquisitive, or homosexual” (Our Natural Place, p. 243).  Nevertheless, we may learn a bit about ourselves as we relate genetic variation to both cognitive science and to rigorous phylogenetic analysis.

One great example of a recent paper that covers the link from genes to cognition is, “MAO A VNTR polymorphism and variation in human morphology: a VBM study” by Cerasa et al., [PMID: 18596609].  Here the team investigates the structure of the human male brain using a method known as voxel-based-morphometry (VBM) that allowed them to ask where in the brain one might observe grey-matter changes that are correlated to genotype?  After an analysis of 33 high-maoa-expressing males vs. 26 low-expressing males, the team found that only in the orbitofrontal cortex were such associations significant.  This, as noted by the team, is of interest, since the orbitofrontal cortex is an area of the brain that is known to regulate impulsivity.  In this study, the high-expressing males had lower levels of grey matter in the orbitofrontal cortex, a result that is in-line with a previous finding – however it remains somewhat out of trend with earlier findings showing that smaller orbitofrontal cortex volumes (without respect to genotype) are associated with higher impulsivity and findings that show that boys with the high-expression form of MAOA were less likely to engage in aggressive behavior.

Clearly, this little bit of the genome containing the MAOA-VNTR has a complex – but interesting story to tell.  The gene does not seem to show any evidence for recent positive selection, so perhaps the role of maoa and its effects on aggression were worked out long before our lineage came along.  Indeed, now we must learn to bear our genetic legacy proudly and humanely.  Good luck!

Reblog this post [with Zemanta]

Read Full Post »

Dopamine receptor D4
Image via Wikipedia

Attention Deficit Hyperactivity Disorder is one of the most widespread psychiatric diagnoses in children. Parents who are faced with the decision to medicate or not medicate their children may wonder if their child – given a bit more time – won’t just “grow out of it”, as many children seem to do. With this in mind, it would obviously be helpful to have biomarkers that could predict whether certain children are more likely to simply acquire better attentional control on their own, and those children that might not. In their paper, “Polymorphisms of the Dopamine D4 Receptor, Clinical Outcome, and Cortical Structure in Attention-Deficit/Hyperactivity Disorder” (Arch Gen Psychiatry Vol 64 (no. 8), Aug 2007) a veritable dream team of child developmental neuroscientists working across several medical institutions report on two such biomarkers. One biomarker is the thickness of the orbitofrontal cortex and posterior parietal cortex. MRI-based measurments of these parts of the brain (just about 5mm thick!) show that children who carry a diagnosis of ADHD have a thinner cortical sheet in these regions. Another biomarker is genetic variation in an intracytoplasmic loop of the G-protein coupled dopamine D4 receptor (DRD4). Children with ADHD are more likely to carry a longer 7-repeat version of this VNTR polymorphism than the more common 4-repeat. Interestingly, the research team found that healthy children who carry the 7-repeat genetic variant also have slightly thinner cortex in the orbitofrontal and posterior parietal cortex, suggesting that this genetic variant may influence the risk of ADHD by way of an effect on cortical development. Additionally, the research team found that the cortex of ADHD children who carry this 7-repeat genetic variant “catches up” from age 8 and eventually falls within the range of healthy children by age 15. Lastly, the team reports that ADHD children who carry the 7-repeat had better clinical outcomes (albeit, many of the ADHD children in this study were treated with medication). Nevertheless, it appears that some progress has been made in identifying biomarkers that might predict favorable developmental trajectories.

Reblog this post [with Zemanta]

Read Full Post »

Holiday time is full of all things delicious and fattening. Should I have a little chocolate now, or wait till later and have a bigger dessert ? Of course, this is not a real forced choice (in my case, the answer too often seems – alas – “I’ll have both!”), but there are many times in life when we are forced to decide between ‘a little now’ or ‘more later’. Sometimes, its clear that the extra $20 in your pocket now would be better utilized later on, after a few years of compound interest. Other times, its not so clear. Consider the recent ruling by the Equal Employment Opportunity Commission, which allows employers to drop retirees’ health coverage once they turn 65 and become eligible for Medicare. Do I save my resources now to provide for my geezerdom healthcare spending, or do I enjoy (spend) my resources now while I’m young and able ? How do I make these decisions ? How does my life experience and genome interact to influence the brain systems that support these computations ? Boettiger and company provide some insight to these questions in their paper, “Immediate Reward Bias in Humans: Fronto-Parietal Networks and a Role for the Catechol-O-Methyltransferase 158Val/Val Genotype(DOI). The authors utilize an assay that measures a subject’s preference for rewards now or later and use functional brain imaging to seek out brain regions where activity is correlated to preferences for immediate rewards. Dopamine rich brain regions such as the posterior parietal cortex, dorsal prefrontal cortex and rostral parahippocampal gyrus showed (+) correlations while the lateral orbitofrontal cortex showed a (-) correlation. Variation in the dopaminergic enzyme COMT at the rs165688 SNP also showed a correlation with preferences for immediate reward as well as with brain activation. The authors’ results suggest that improving one’s ability to weigh long-term outcomes is a likely therapeutic avenue for helping impulsive folks (like me) optimize our resource allocation. I have not yet had my genome deCODEd or Google-ed, but strongly suspect I am a valine/valine homozygote.

Indeed it seems I am a GG (Valine/Valine) at this site according to 23andMe !

Reblog this post [with Zemanta]

Read Full Post »