Feeds:
Posts
Comments

Archive for the ‘Parahippocampal gyrus’ Category

DCDC2 (gene)
Image via Wikipedia

A recent analysis of brain structure in healthy individuals who carry a common 2,445-bp deletion in intron 2 of the doublecortin domain containing 2 (DCDC2) gene found that heterozygotes for the deletion showed higher grey matter volumes for several brain areas known to be involved in the processing of written and spoken language (superior, medial and inferior temporal cortex, fusiform, hippocampal / parahippocampal, inferior occipito-parietal, inferior and middle frontal gyri, especially in the left hemisphere) [doi:10.1007/s11682-007-9012-1].  The DCDC2 gene sits within a well known locus frequently found to be associated with developmental dyslexia, and associations of reading disability with DCDC2 have been confirmed in population-based studies.  dcdc2rnai Further work on DCDC2 (open access) shows that the DNA that is deleted in the 2,445-bp deletion in intron 2 carries a number of repeating sequences to which developmental transcription factors bind and that inhibition of DCDC2 results in altered neuronal migration (the right-hand panel shows altered radial migration when DCDC2 is inhibited).  Perhaps the greater grey matter volumes are related to this type of neuronal migration finding?  Will be interesting to follow this story further!

Reblog this post [with Zemanta]

Read Full Post »

The visual dorsal stream (green) and ventral s...
Image via Wikipedia

One of the longstanding puzzles of brain development is why, in some cases, individuals with developmental disabilities sometimes show enhanced function, rather than a more typical loss of cognitive function.  In the case of Williams Syndrome – which is caused by a hemizygous deletion of a cluster of about 25 genes on 7q11.23 – children show a mild form of mental retardation but also a notable increase in gregarious and social behaviorHow might a genetic deletion lead to a gain of function ? In a recent paper by Sarpal and colleagues [doi:10.1093/cercor/bhn004], they explore the role of the visual cortex and its role in feeding and filtering information to emotional  regions of the brain.

From its receipt of visual information from the eyes – say perhaps, you’re looking at someone’s face, the primary visual cortex parses information into 2 separate streams – a dorsal stream which is good at processing “where” information related to location; and a ventral stream which is good at processing “what”information related to identity and recognition – and moreover, provides inputs to the prefrontal and amygdala (brain regions which are important for social behaviors). What if the genes deleted in Williams Syndrome altered the development of a part of visual cortex that participates in early visual processing to alter the relative balance of dorsal to ventral processing ?  Might it result in a an individual who was better than usual at processing objects (faces) and also showing related emotional traits ? Indeed, this has been a longstanding hypothesis that has since been supported by findings that show relatively intact ventral stream processing but disrupted dorsal stream processing.

In their current paper, Sarpal and colleagues measured brain activity as well as correlations of activity (connectivity) between brain regions as patients with WS passively viewed visual objects (faces and houses).  They report that connections from early visual processing areas (fusiform and parahippocampal gyrus) in WS are actually weaker to the frontal cortex and amygdala.  Since activation of the frontal cortex and amygdala are associated with inhibition and fear, it may be case that the weaker connections from early visual areas to these regions gives rise to the type of gregarious and prosocial (a lack of fear and inhibition) behavior seen in WS.   In further pinpointing where in the brain the genes for WS might be causing a developmental change, the authors point to the ventral lip of the collateral sulcus, an area situated between the fusiform and parahippocampal gyri.  This may be the spot to more closely examine the role of genes such as LIMK1 – a gene that participates in the function of the actin cytoskeleton (an important process in synaptic formation).

This lecture by V.S. Ramachandran covers some of these pathways with respect to Capgras Syndrome.

Reblog this post [with Zemanta]

Read Full Post »

Holiday time is full of all things delicious and fattening. Should I have a little chocolate now, or wait till later and have a bigger dessert ? Of course, this is not a real forced choice (in my case, the answer too often seems – alas – “I’ll have both!”), but there are many times in life when we are forced to decide between ‘a little now’ or ‘more later’. Sometimes, its clear that the extra $20 in your pocket now would be better utilized later on, after a few years of compound interest. Other times, its not so clear. Consider the recent ruling by the Equal Employment Opportunity Commission, which allows employers to drop retirees’ health coverage once they turn 65 and become eligible for Medicare. Do I save my resources now to provide for my geezerdom healthcare spending, or do I enjoy (spend) my resources now while I’m young and able ? How do I make these decisions ? How does my life experience and genome interact to influence the brain systems that support these computations ? Boettiger and company provide some insight to these questions in their paper, “Immediate Reward Bias in Humans: Fronto-Parietal Networks and a Role for the Catechol-O-Methyltransferase 158Val/Val Genotype(DOI). The authors utilize an assay that measures a subject’s preference for rewards now or later and use functional brain imaging to seek out brain regions where activity is correlated to preferences for immediate rewards. Dopamine rich brain regions such as the posterior parietal cortex, dorsal prefrontal cortex and rostral parahippocampal gyrus showed (+) correlations while the lateral orbitofrontal cortex showed a (-) correlation. Variation in the dopaminergic enzyme COMT at the rs165688 SNP also showed a correlation with preferences for immediate reward as well as with brain activation. The authors’ results suggest that improving one’s ability to weigh long-term outcomes is a likely therapeutic avenue for helping impulsive folks (like me) optimize our resource allocation. I have not yet had my genome deCODEd or Google-ed, but strongly suspect I am a valine/valine homozygote.

Indeed it seems I am a GG (Valine/Valine) at this site according to 23andMe !

Reblog this post [with Zemanta]

Read Full Post »