Feeds:
Posts
Comments

Posts Tagged ‘Stress’

Modified drawing of the neural circuitry of th...
Image via Wikipedia

You already know this, but when you are stressed out (chronic stress), your brain doesn’t work very wellThat’s right – just when you need it most – your brain has a way of letting you down!

Here are a few things that happen to the very cells (in the hippocampus) that you rely on:

reorganization within mossy fiber terminals
loss of excitatory glutamatergic synapses
reduction in the surface area of postsynaptic densities
marked retraction of thorny excrescences
alterations in the lengths of the terminal dendritic segments of pyramidal cells
reduction of the dorsal anterior CA1 area volume

Thanks brain!  Thanks neurons for abandoning me when I need you most!  According to this article, these cellular changes lead to, “impaired hippocampal involvement in episodic, declarative, contextual and spatial memory – likely to debilitate an individual’s ability to process information in new situations and to make decisions about how to deal with new challenges.” UGH!

Are our cells making these changes for a reason?  Might it be better for cells to remodel temporarily rather than suffer permanent, life-long damage?  Perhaps.  Perhaps there are molecular pathways that can lead the reversal of these allostatic stress adaptations?

Check out this recent paper: “A negative regulator of MAP kinase causes depressive behavior” [doi 10.1038/nm.2219]  the authors have identified a gene – MKP-1 – a phosphatase that normally dephosphorylates various MAP kinases involved in cellular growth, that, when inactivated in mice, produces animals that are resistant to chronic unpredictable stress.  Although its known that MKP-1 is needed to limit immune responses associated with multi-organ failure during bacterial infections, the authors suggest:

“pharmacological blockade of MKP-1 would produce a resilient of anti-depressant response to stress”

Hmmm … so Mother Nature is using the same gene to regulate the immune response (turn it off so that it doesn’t damage the rest of the body) and to regulate synaptic growth (turn it off – which is something we DON’T want to do when we’re trying to recover from chronic stress)?  Mother Nature gives us MKP-1 so I can survive an infection, but the same gene prevents us from recovering (finding happiness) from stress?

Of course, we do not need to rely only on pharmacological solutions.  Exercise & social integration are cited by these authors as the top 2 non-medication strategies.

Enhanced by Zemanta

Read Full Post »

Mother Nature
Image via Wikipedia

The current buzz about about GWAS  and longevity and GWAS in general has stirred up many longstanding inconvenient issues that arise when trying to interpret the results of very large, expensive and worthwhile genetic studies.  Its seems that Mother Nature does not give up her secrets without a fight.

One of the most common “inconvenient issues” is the fact that so many of the SNPs that come out of these studies are located far away from protein-encoding exons.  This ubiquitous observation is almost always followed with, “well, maybe its in linkage disequilibrium with a more functional SNP” or something along these lines – wherein the authors get an automatic pass.  OK by me.

Another “inconvenient issue” is the fact that many of these SNPs are of minimal effect and don’t exactly add up or interact to account for the expected heritability.  This problem of “missing heritability” is a big one (see some new insights in the latest issue of Nature Genetics) leading many to suspect that the effects of genes are dependent on complex interactions with each other and the environment.

A recent paper, “A map of open chromatin in human pancreatic islets” [doi:10.1038/ng.530] by Gaulton and colleagues caught my eye because it seems to shed light on both of these particular inconvenient issues.  The authors find that the diabetes risk variant rs7903146 in the TCF7L2 gene is both located in an intron and subject to epigenetic regulation (our sedentary, high-fat, high-stress lives can potentially interact with the genome by causing epigenetic change).

It appears that the T-allele of the intronic rs7903146 is correlated with a more open, transcription-prone form of DNA/chromatin than is the C-allele. The authors confirmed this using both chromatin mapping and gene expression assays on pancreatic islet cells harvested from non-diabetic donors and islet cell-lines.  The results suggest that the risk-conferring T-allele of this intronic SNP may be driving expression (gain-of-function) of the TCF7L2 gene.  What types of environmental stimuli might also impact the opening and closing of chromatin at this location?

This type of interplay of environment, genome and epigenome is probably rampant in the area of brain and behavior – so perhaps the study of diabetes will provide some clues to the many GWAS SNPs that are far away from exons. More on the genetics of epigenetics here.

Enhanced by Zemanta

Read Full Post »

Corticotropin-releasing hormone
Image via Wikipedia

According to the authors of  “Protective effect of CRHR1 gene variants on the development of adult depression following childhood maltreatment: replication and extension”  [PMID: 19736354], theirs is “the first instance of Genes x Environment research that stress has been ascertained by more than 1 study using the same instrument“.  The gene they speak of is the Corticotropin-releasing hormone receptor 1 (CRHR1) gene (SNPs rs7209436, rs110402, rs242924 which can form a so-called T-A-T haplotype which has been associated with protection from early life stress (as ascertained using the Childhood Trauma Questionnaire CTQ)).

The research team examined several populations of adults and, like many other studies, found that early life stress was associated with symptoms of depressive illness but, like only 1 previous study, found that the more T-A-T haplotypes a person has (0,1,or 2) the less likely they were to suffer these symptoms.

Indeed, the CRHR1 gene is an important player in a complex network of hormonal signals that regulate the way the body (specifically the hypothalamic pituitary adrenal axis) transduces the effects of stress.  So it seems quite reasonable to see that individual differences in ones ability to cope with stress might correlate with genotype here.   The replication seems like a major step forward in the ongoing paradigm shift from “genes as independent risk factors” to “genetic risk factors being dependent on certain environmental forces”.  The authors suggest that a the protective T-A-T haplotype might play a role in the consolidation of emotional memories and that CRHR1 T-A-T carriers might have a somewhat less-efficient emotional memory consolidation (sort of preventing disturbing memories from making it into long-term storage in the first place?) – which is a very intriguing and testable hypothesis.

On a more speculative note … consider the way in which the stress responsivity of a developing child is tied to its mother’s own stress responsivity.  Mom’s own secretion of CRH from the placenta is known to regulate gestational duration and thus the size, heartiness and stress responsiveness of her newborn.  The genetic variations are just passed along from generation to generation and provide some protection here and there in an intertwined cycle of life.

The flowers think they gave birth to seeds,
The shoots, they gave birth to the flowers,
And the plants, they gave birth to the shoots,
So do the seeds they gave birth to plants.
You think you gave birth to the child.
None thinks they are only entrances
For the life force that passes through.
A life is not born, it passes through.

anees akbar

Reblog this post [with Zemanta]

Read Full Post »

If you’re a coffee drinker, you may have noticed the new super-sized portions available at Starbucks.  On this note, it may be worth noting that caffeine is a potent psychoactive substance of which – too much – can turn your buzz into a full-blown panic disorder.  The Diagnostic and Statistical Manual for psychiatry outlines a number of caffeine-related conditions mostly involving anxieties that can arise when the natural alertness-promoting effects are pushed to extremes.  Some researchers have begun to explore the way the genome interacts with caffeine and it is likely that many genetic markers will surface to explain some of the individual differences in caffeine tolerance.

Here’s a great paper, “Association between ADORA2A and DRD2 Polymorphisms and Caffeine-Induced Anxiety” [doi: 10.1038/npp.2008.17] wherein polymorphisms in the adenosine A2A receptor (ADORA2A encodes the protein that caffeine binds to and antagonizes) – as well as the dopamine D2 receptor (DRD2 encodes a protein whose downstream signals are normally counteracted by A2A receptors) — show associations with anxiety after the consumption of 150mg of caffeine (about an average cup of coffee – much less than the super-size, super-rich cups that Starbucks sells).  The variants, rs5751876 (T-allele), rs2298383 (T-allele) and rs4822492 (G-allele) from the ADORA2A gene as well as rs1110976 (-/G genotype) from the DRD2 gene showed significant increases in anxiety in a test population of 102 otherwise-healthy light-moderate regular coffee drinkers.

My own 23andMe data only provides a drop of information suggesting I’m protected from the anxiety-promoting effects.  Nevertheless, I’ll avoid the super-sizes.
rs5751876 (T-allele)  C/C – less anxiety
rs2298383 (T-allele) – not covered
rs4822492 (G-allele) – not covered
rs1110976 (-/G genotype) – not covered

Reblog this post [with Zemanta]

Read Full Post »

We hope, that you choke, that you choke.
Image by Corrie… via Flickr

Coping with fear and anxiety is difficult.  At times when one’s life, livelihood or loved one’s are threatened, we naturally hightenen our senses and allocate our emotional and physical resources for conflict.  At times, when all is well, and resources, relationships and relaxation time are plentiful, we should unwind and and enjoy the moment.  But most of us don’t.  Our prized cognitive abilities to remember, relive and ruminate on the bad stuff out there are just too well developed – and we suffer – some more than others  (see Robert Saplosky’s book “Why Zebras Don’t Get Ulcers” and related video lecture (hint – they don’t get ulcers because they don’t have the cognitive ability to ruminate on past events).  Such may be the flip side to our (homo sapiens) super-duper cognitive abilities.

Nevertheless, we try to understand our fears and axieties and understand their bio-social-psychological bases. A recent paper entitled, “A Genetically Informed Study of the Association Between Childhood Separation Anxiety, Sensitivity to CO2, Panic Disorder, and the Effect of Childhood Parental Loss” by Battaglia et al. [Arch Gen Psychiatry. 2009;66(1):64-71] brought to mind many of the complexities in beginning to understand the way in which some individuals come to suffer more emotional anguish than others.  The research team addressed a set of emotional difficulties that have been categorized by psychiatrists as “panic disorder” and involving sudden attacks of fear, sweating, racing heart, shortness of breath, etc. which can begin to occur in early adulthood.

Right off the bat, it seems that one of the difficulties in understanding such an emotional state(s) are the conventions (important for $$ billing purposes) used to describe the relationship between “healthy” and “illness” or “disorder”.  I mean, honestly, who hasn’t experienced what could be described as a mild panic disorder once or twice?  I have, but perhaps that doesn’t amount to a disorder.  A good read on the conflation of normal stress responses and disordered mental states is “Transforming Normality into Pathology: The DSM and the Outcomes of Stressful Social Arrangements” by Allan V. Horwitz.

Another difficulty in understanding how and why someone might experience such a condition has to do with the complexities of their childhood experience (not to mention genes). Child development and mental health are inextrictably related, yet, the relationship is hard to understand.  Certainly, the function of the adult brain is the product of countless developmental unfoldings that build upon one another, and certainly there is ample evidence that when healthy development is disrupted in a social or physical way, the consequences can be very unfortunate and long-lasting. Yet, our ability to make sense of how and why an individual is having mental and/or emotional difficulty is limited.  Its a complex, interactive and emergent set of processes.

What I liked about the Battaglia et al., article was the way in which they acknowledged all of these complexities and – using a multivariate twin study design – tried to objectively measure the effects of genes and environment (early and late) as well as candidate biological pathways (sensitivity to carbon dioxide).  The team gathered 346 twin pairs (equal mix of MZ and DZ) and assessed aspects of early and late emotional life as well as the sensitivity to the inhalation of 35% CO2 (kind of feels like suffocating and is known to activate fear circuitry perhaps via the ASC1a gene).   The basic notion was to parcel out the correlations between early emotional distress and adult emotional distress as well as with a very specific physiological response (fear illicited by breathing CO2).  If there were no correlation or covariation between early and late distress (or the physiological response) then perhaps these processes are not underlain by any common mechanism.

However, the team found that there was covariation between early life emotion (criteria for separation anxiety disorder) and adult emotion (panic disorder) as well as the physiological/fear response illicited by CO2.  Indeed there seems to be a common, or continuous, set of processes whose disruption early in development can manifest as emotional difficulty later in development.  Furthermore, the team suggests that the underlying unifying or core process is heavily regulated by a set of additive genetic factors.  Lastly, the team finds that the experience of parental loss in childhood increased (but not via an interaction with genetic variation) the strength of the covariation between early emotion, late emotion and CO2 reactivity.  The authors note several limitations and cautions to over-interpreting these data – which are from the largest such study of its kind to date.

For individuals who are tangled in persistent ruminations and emotional difficulties, I don’t know if these findings help.  They seem to bear out some of the cold, cruel logic of life and evolution – that our fear systems are great at keeping us alive when we’ve had adverse experience in childhood, but not necessarily happy.  On the other hand, the covariation is weak, so there is no such destiny in life, even when dealt unfortunate early experience AND genetic risk.  I hope that learning about the science might help folks cope with such cases of emotional distress.

Reblog this post [with Zemanta]

Read Full Post »

Some quick sketches that might help put the fast-growing epigenetics and cognitive development literature into context.  Visit the University of Utah’s Epigenetics training site for more background!

The genome is just the A,G,T,C bases that encode proteins and other mRNA molecules.  The “epi”genome are various modification to the DNA – such as methylation (at C residues) – and acetylation of histone proteins.   These changes help the DNA form various secondary and tertiary structures that can facilitate or block the interaction of DNA with the transcriptional machinery.

When DNA is highly methylated, it generally is less accessible for transcription and hence gene expression is reduced.  When histone proteins (purple blobs that help DNA coil into a compact shape) are acetylated, the DNA is much more accessible and gene expression goes up.

We know that proper epigenetic regulation is critical for cognitive development because mutations in MeCP2 – a protein that binds to methylated C residues – leads to Rett syndrome.  MeCP2 is normally responsible for binding to methylated DNA and recruiting histone de-acetylases (HDACs) to help DNA coil and condense into a closed form that is inaccessible for gene expression (related post here).

When DNA is accessible for gene expression, then it appears that – during brain development – there are relatively more synaptic spines produced (related post here).  Is this a good thing? Rett syndrome would suggest that – NO – too many synaptic spines and too much excitatory activity during brain development may not be optimal.  Neither is too little excitatory (too much inhibitory) activity and too few synaptic spines.  It is likely that you need just the right balance (related post here). Some have argued (here) that autism & schizophrenia are consequences of too many & too few synapses during development.

The sketch above illustrates a theoretical conjecture – not a scenario that has been verified by extensive scientific study. It tries to explain why epigenetic effects can, in practice, be difficult to disentangle from true (changes in the A,G,T,C sequence) genetic effects.  This is because – for one reason – a mother’s experience (extreme stress, malnutrition, chemical toxins) can – based on some evidence – exert an effect on the methylation of her child’s genome.  Keep in mind, that methylation is normal and widespread throughout the genome during development.  However, in this scenario, if the daughter’s behavior or physiology were to be influenced by such methylation, then she could, in theory, when reaching reproductive age, expose her developing child to an environment that leads to altered methylation (shown here of the grandaughter’s genome).  Thus, an epigenetic change would look much like there is a genetic variant being passed from one generation to the next, but such a genetic variant need not exist (related post here, here) – as its an epigenetic phenomenon.  Genes such as BDNF have been the focus of many genetic/epigenetic studies (here, here) – however, much, much more work remains to determine and understand just how much stress/malnutrition/toxin exposure is enough to cause such multi-generational effects.  Disentangling the interaction of genetics with the environment (and its influence on the epigenome) is a complex task, and it is very difficult to prove the conjecture/model above, so be sure to read the literature and popular press on these topics carefully.

Reblog this post [with Zemanta]

Read Full Post »

We are all familiar with the notion that genes are NOT destiny and that the development of an individual’s mind and body occur in a manner that is sensitive to the environment (e.g. children who eat lots of healthy food grow bigger and stronger than those who have little or no access to food).  In the case of the brain, one of the ways in which the environment gets factored into development – is via so-called “sensitive periods” where certain parts of the brain transiently rely on sensory experience in order to develop.  Children born with cataracts, for example, will have much better vision if the cataracts are removed in the first few weeks of life rather than later on.  This is because the human visual system has a “sensitive period” early in development where it is extra-sensitive to visual input and, after which, the function and connectivity of various parts of the system is – somewhat permanently – established for the rest of the person’s life.  Hence, if there is little visual input (cataracts) during the sensitive period, then the visual system is somewhat permanently unable to process visual information – even if the cataracts are subsequently removed.  (To learn more about this topic, visit Pawan Sinha’s lab at M.I.T and his Project Prakash intervention study on childhood blindness.)

What the heck is an “in”sensitive period then?   Well, whereas visual input is clearly a “good thing” for the sensitive period of visual development, perhaps some inputs are “bad” and it may be useful to shield or protect the brain from exposure.  Maybe some environmental inputs are “bad” and one would not want the developing brain to be exposed to them and say, “OK, this (bad stuff) is normal“.  As a parent, I am constantly telling my children that the traffic-filled street is a “bad place” and, like all parents, I would not want my children to think that it was OK to wander into the street.  Clearly, I want my child to recognize the car-filled street as a “bad thing”.

In the developing brain, it turns out that there are some “bad things” that one would NOT like (the brain) to get accustomed to.  Long-term exposure to glucocorticoids is one example – well-known to cause a type of neuronal remodelling in the hippocampus, that is associated with poor cognitive performance (visit Bruce McEwen’s lab at Rockefeller University to learn more about this).  Perhaps an “in”sensitive period – where the brain is insensitive to glucocorticoids – is one way to teach the brain that glucocorticoids are “bad” and DO NOT get too familiar with them (such a period does actually occur during early post-natal mammalian development).  Of course, we do need our brains to mount an acute stress response, if and when, we are being threatened, but it is also very important that the brain learn to TURN-OFF the acute stress response when the threat has passed – an extensive literature on the deleterious effects of chronic exposure to stress bears this out.  Hence, the brain needs to learn to recognize the flow of glucocorticoids as something that needs to be shut down.

OK, so our developing brain needs to learn what/who is “good vs. bad”.  Perhaps sensitive and insensitive periods help to reinforce this learning – and also – to cement learning into the system in a sort of permanent way (I’m really not sure if this is the consensus view, but I’ll try and podcast interview some of the experts here asap).  In any case, in the case of the visual system, it is clear that the lack of visual input during the sensitive period has long lasting consequences.  In the case of the stress response, it is also clear that if there is untoward stress early in development, one can be (somewhat) destined to endure a lifetime of emotional difficulty.  Previous posts here, here, here cover research on behavioral/genomic correlates of early life stress.

Genes meet environment in the epigenome during sensitive and insensitive periods?

As stated at the outset – genes are not destiny.  The DNA cannot encode a system that knows who/what is good vs. bad, but rather can only encode a system of molecular parts that can assemble to learn these contingencies on the fly.  During sensitive periods in the visual system, cells in the visual system are more active and fire more profusely during the sensitive period. This extra firing leads to changes in gene expression in ways that (somewhat) permanently set the connectivity, strength and sensitivity of visual synapses.  The expression of neuroligins, neurexins, integrins and all manner of extracellular proteins that stabilize synaptic connections are well-known tagets of activity-induced gene expression.  Hence the environment “interacts” with the genome via neuronal firing which induces gene expression which – in turn – feeds back and modulates neuronal firing.  Environment –> neuronal firing –> gene expression –> modified neuronal firing.  OK.

Similarly, in the stress response system, the environment induces changes in the firing of cells in the hypothalamus which leads (through a series of intermediates) to the release of glucocorticoids.  Genes induced during the firing of hypothalamic cells and by the release of glucocorticoid can modify the organism’s subsequent response to stressful events.  Environment –> neuronal firing –> gene expression –> modified neuronal firing.  OK.

Digging deeper into the mechanism by which neuronal firing induces gene expression, we find an interesting twist.   Certainly there is a well-studied mechanism wherein neuronal firing causes Ca++ release which activates gene expression of neuroligins, neurexins, integrins and all manner of extracellular proteins that stabilize synaptic connections – for many decades.  There is another mechanism that can permanently mark certain genes and alter their levels of expression – in a long-lasting manner.  These are so-called epigenetic mechanisms such as DNA methylation and acetylation.  As covered here and here, for instance, Michael Meaney’s lab has shown that DNA CpG methylation of various genes can vary in response to early-life stress and/or maternal care. In some cases, females who were poorly cared for, may, in turn, be rather lousy mothers themselves as a consequence of these epigenetic markings.

A new research article, “Dynamic DNA methylation programs persistent adverse effects of early-life stress” by Chris Murgatroyd and colleagues [doi:10.1038/nn.2436] explores these mechanisms in great detail.  The team explored the expression of the arginine vasopressin (AVP) peptide – a gene which is important for healthy social interaction and social-stress responsivity.  Among many other interesting results, the team reports that early life stress (using a mouse model) leads to lower levels of methylation in the 3rd CpG island which is located downstream in a distal gene-expression-enhancer region.  In short, more early-life stress was correlated with less methylation, more AVP expression which is known to potentiate the release of glucocorticoids (a bad thing).   The team reports that the methyl binding MeCP2 protein, encoded by the gene that underlies Rett syndrome, acts as a repressor of AVP expression – which would normally be a good thing since it would keep AVP levels (and hence glucocorticoid levels) down.  But unfortunately, early-life stress removes the very methyl groups to which MeCP2 binds and also the team reports that parvocelluar neuronal depolarization leads to phosphorylation (on serine residue #438) of MeCP2 – a form of MeCP2 that is less accessible to its targets.  So, in  a manner similar to other examples, early life stress can have long-lasting effects on gene expression via an epigenetic mechanism – and disables an otherwise protective mechanism that would shield the organism from the effects of stress.  Much like in the case of Rett syndrome (as covered here) it seems that when MeCP2 is bound – then it silences gene expression – which would seem to be a good thing when it comes to the case of AVP.

So who puts these epigenetic marks on chromosomes and why?

I’ll try and explore this further in the weeks ahead.  One intriguing idea about why methylation has been co-opted among mammals, has to do with the idea of parent-offspring conflict.  According to David Haig, one of the experts on this topic, males have various incentives to cause their offspring to be large and fast growing, while females have incentive to combat the genomic tricks that males use, and to keep their offspring smaller and more manageable in size.  The literature clearly show that genes that are marked or methylated by fathers (paternally imprinted genes) tend to be growth promoting genes and that maternally imprinted genes tend to be growth inhibitors.  One might imagine that maternally methylated genes might have an impact on maternal care as well.

Lastly, the growth promoting/inhibiting effects of paternal/maternal genes and gene markings is now starting to be discussed somewhat in the context of autism/schizophrenia which have have been associated with synaptic under-/over-growth, respectively.

Building a brain is already tough enough – but to have to do it amidst an eons-old battle between maternal and paternal genomes.  Sheesh!  More on this to come.

Reblog this post [with Zemanta]

Read Full Post »

Logo of the United States National Institute o...
Image via Wikipedia

Many thanks to Dr. Christina S. Barr from the National Institutes of Health/National Institute on Alcohol Abuse and Alcoholism-Laboratory of Clinical and Translational Studies, National Institutes of Health Animal Center for taking the time to comment on her team’s recent publication, “Functional CRH variation increases stress-induced alcohol consumption in primates” [doi:10.1073/pnas.0902863106] which was covered here.  On behalf of students and interested readers, I am so grateful to her for doing this!  Thank you Dr. Barr!

For readers who are unfamiliar with the extensive literature on this topic, can you give them some basic background context for the study?

“In rodents, increased CRH system functioning in parts of the brain that drive anxious responding (ie, amygdala) occurs following extended access to alcohol and causes animals to transition to the addicted state.  In rodent lines in which genetic factors drive increased CRH system functioning, those animals are essentially phenocopies of those in the post-dependent state.  We had a variant in the macaque that we expected would drive increased CRH expression in response to stress, and similar variants may exist in humans.  We, therefore, hypothesized that this type of genetic variation may interact with prior stress exposure to increase alcohol drinking.”

Can you tells us more about the experimental design strategy and methods?

“This was a study that relied on use of archived NIAAA datasets. The behavioral and endocrine data had been collected years ago, but we took a gene of interest, and determined whether there was variation. We then put a considerable amount of effort into assessing the functional effects of this variant, in order to have a better understanding of how it might relate to individual variation. We then genotyped archived DNA samples in the colony for this polymorphism.”

“I am actually a veterinarian in addition to being a neuroscientist- we have the “3 R’s”. Reduce, refine, and replace…..meaning that animal studies should involve reduced numbers, should be refined to minimize pain/distress and should be replaced with molecular studies if possible.  This is an example of how you can marry use of archived data and sophisticated molecular biology techniques/data analysis to come up with a testable hypothesis without the use of animal subjects. (of course, it means you need to have access to the datasets….;)”

How do the results relate to broader questions and your field at large?

“I became interested in this system because it is one that appears to be under intense selection.  In a wide variety of animal species, individuals or strains that are particularly stress-reactive may be more likely to survive and reproduce successfully in highly variable or stressful environments. Over the course of human evolution, however, selective pressures have shifted, as have the nature and chronicity of stress exposures.  In fact, in modern society, highly stress-reactive individuals, who are no less likely to be eaten by a predator (predation not being a major cause of mortality in modern humans), may instead be more likely to fall susceptible to various-stress related disorders, including chronic infections, diabetes, heart disease, accelerated brain aging, stress-related psychiatric disorders, and even drug and alcohol problems. Therefore, these genetic variants that are persistent in modern humans may make individuals more vulnerable to “modern problems.”

I do hope this helps. Let me know if it doesn’t, and I will try to better answer your questions.”

THANK YOU AGAIN VERY MUCH DR. BARR!!

Reblog this post [with Zemanta]

Read Full Post »

Zebra Zen
Image by digitalART2 via Flickr

In Robert Sapolsky’s book, “Why Zebras Don’t Get Ulcers“, he details a biological feedback system wherein psychological stress leads to the release of glucocorticoids that have beneficial effects in the near-term but negative effects (e.g. ulcers, depression, etc.) in the long-term.  The key to getting the near-term benefits and avoiding the long-term costs – is to be able to turn OFF the flow of glucocorticoids.  This is normally dependent on circuitry involving the frontal cortex and hippocampus, that allow individuals to reset their expectations and acknowledge that everything is OK again.  Here’s the catch (i.e. mother nature’s ironic sense of humor). These very glucocorticoids can initiate a kind of reorganization or ‘shrinkage’ to the hippocampus  – and this can disable, or undermine the ability of the hippocampus to turn OFF the flow of glucocorticoids.  Yes, that’s right, the very switch that turns OFF glucocorticoid flow is disabled by exposure to glucocorticoids!  Can you imagine what happens when that switch (hippocampus) get progressively more disabled?  Your ability to turn OFF glucocorticoids gets progressively worse and the negative effects of stress become more and more difficult to cope with.

Sounds depressing.  Indeed it is, and there are many findings of reduced hippocampal volume in various depressive illnesses.  The complex problem at hand, then, is how to reverse the runaway-train-like (depression leads to glucocorticoids which leads to smaller hippocampus which leads to more depression) effects of stress and depression?

One new avenue of research has been focused on the ability of the hippocampus to normally produce new cells – neurogenesis – throughout life.  Might such cells be useful in reversing hippocampal remodeling (shrinkage)?  If so, what molecules or genes might be targeted to drive this process in a treatment setting?

The recent paper by Joffe and colleagues, “Brain derived neurotrophic factor Val66Met polymorphism, the five factor model of personality and hippocampal volume: Implications for depressive illness” [doi: 10.1002/hbm.20592] offers some key insights.  They examined 467 healthy participants of the Brain Resource International Database (a personalized medicine company with a focus on brain health) using personality tests, structural brain imaging and genotyping for an A-to-G variation (valine-to-methionine) polymorphism in the BDNF gene.  They report that lower volume of the hippocampus was associated with higher scores of neuroticism (worriers) – but, this negative relationship was not found in all people – just those who carry the A- or methionine-allele.  Thus, those individuals who carry the G/G (valine/valine) genotype of BDNF may be somewhat more protected from the negative (hippocampal remodeling) effects of psychological stress.  Interestingly, the BDNF gene seems to play a role in brain repair!  So perhaps this neuro-biochemical pathway can be explored to further therapeutic benefit.  Exciting!!

By the way, the reason zebras don’t get ulcers, is because their life revolves around a lot of short term stressors (mainly hungry lions) where the glucocorticoid-stress system works wonderfully to keep them alive.  Its only homo sapiens who has enough long-term memory to sit around in front of the TV and incessantly fret about the mortgage, the neighbors, the 401K etc., who have the capacity to bring down all the negative, toxic effects of chronic glucocorticoids exposure upon themselves. My 23andMe profile shows that I am a G/G valine/valine … does this mean I’m free to worry more?  Now I’m worried.  More on BDNF here.

Reblog this post [with Zemanta]

Read Full Post »

Lonely child
Image by kodomut via Flickr

For humans, there are few sights more heart-wrenching than an orphaned child (or any orphaned vertebrate for that matter).  Isolated, cold, unprotected, vulnerable – what could the cold, hard calculus of natural selection – “red in tooth and claw” – possibly have to offer these poor, vulnerable unfortunates?

So I wondered while reading, “Functional CRH variation increases stress-induced alcohol consumption in primates” [doi:10.1073/pnas.0902863106].  In this paper, the authors considered the role of a C-to-T change at position -248 in the promoter of the corticotropin releasing hormone (CRH or CRF) gene.  Its biochemical role was examined using nuclear extracts from hypothalamic cells, to demonstrate that this C-to-T nucleotide change disrupts protein-DNA binding, and, using transcriptional reporter assays, that the T-allele showed higher levels of transcription after forskolin stimulation.  Presumably, biochemical differences conferred by the T-allele can have a physiological role and alter the wider functionality of the hypothalamic-pituitary-axis (HPA axis), in which the CRH gene plays a critical role.

The authors ask whether primates (rhesus macaques) who differ in genotype (CC vs. CT) show any differences in physiological stress reactivity – as predicted by differences in the activity of the CRH promoter.  As a stressor, the team used a form of brief separation stress and found that there were no differences in HPA function (assessed by ACTH and Cortisol levels) in animals who were reared by their mothers.  However, when the stress paradigm was performed on animals who were reared without a mother (access to play with other age-matched macaques) there were significant differences in HPA function between the 2 genetic groups (T-alleles showing greater release of stress hormones).  Further behavioral assessments found that the peer reared animals who carried the T-allele explored their environment less when socially separated as adults (again no C vs. T differences in maternally reared animals).  In a separate assessment the T-carriers showed a preference for sweetened alcohol vs. sweetened water in ad lib consumption.

One way of summarizing these findings, could be to say that having no mother is a bad thing (more stress reactivity) and having the T-allele just makes it worse!  Another way could be to say that the T-allele enhances the self-protection behaviors (less exploration could be advantageous in the wild?) that arise from being orphaned.  Did mother nature (aka. natural selection) provide the macaque with a boost of self-preservation (in the form of a T-allele that enhances emotional/behavioral inhibition)?  I’m not sure, but it will be fun to report on further explorations of this query.  Click here for an interview with the corresponding author, Dr. Christina Barr.

—p.s.—

The authors touch on previous studies (here and here) that explored natural selection on this gene in primates and point out that humans and macaques both have 2 major haplotype clades (perhaps have been maintained in a yin-yang sort of fashion over the course of primate evolution) and that humans have a C-to-T change (rs28364015) which would correspond to position -201 in the macaque (position 68804715 on macaque chr. 8), which could be readily tested for similar functionality in humans.  In any case, the T-allele is rare in macaques, so it may be the case that few orphaned macaques ever endure the full T-allele experience.  In humans, the T-allele at rs28364015 seems more common.

Nevertheless, this is yet another – complicated – story of how genome variation is not destiny, but rather a potentiator or life experience – for better or worse.  Related posts on genes and early development (MAOA-here), (DAT-here), (RGS2-here), or just click the “development tag“.

Reblog this post [with Zemanta]

Read Full Post »

Saimiri sciureus.
Image via Wikipedia

Behavioral geneticists are fond of noting that more than half of the risk for mental illness is heritable, and, fonder of the number of specific risk factors that have been identified. What is much less well known however is how these heritable factors interact with the environment to potentiate risk. Psychiatrists, on the other hand, rightly point out that children and adults who experience traumatic and social stress are also at greater risk for psychiatric illness. Indeed, brain imaging has shown a number of anatomical regions where activity declines in subjects and patients alike who experience trauma or other difficult experience. In their recent paper, “Stress-induced changes in primate prefrontal profiles of gene expression,” Karssen and colleagues take a major step towards bridging the gene-by-experience puzzle and examine how gene expression changes in response to socially stressful experience. Using a squirrel monkey model, an experimental group of males was subjected to intermittent social separation and also exposure to new roommates – conditions known to elevate cortisol levels. Using a (note the caveat here) human microarray platform and several signal analysis protocols, the investigators present several hundred genes differentially (interestingly mostly down-regulated) expressed in the frontal cortex. So – the question begs – were any of the genes identified in the Karssen study the same, or in the same pathways, as known genetic risk factors ? Yes – well sort of. The authors present several genes, including a few involved in GABA signaling, that had previously been linked via gene expression studies to mood disorders in humans. Certainly, these are attractive candidates for family- and population-based association studies.

Reblog this post [with Zemanta]

Read Full Post »