Feeds:
Posts
Comments

Posts Tagged ‘panic disorder’

If you’re a coffee drinker, you may have noticed the new super-sized portions available at Starbucks.  On this note, it may be worth noting that caffeine is a potent psychoactive substance of which – too much – can turn your buzz into a full-blown panic disorder.  The Diagnostic and Statistical Manual for psychiatry outlines a number of caffeine-related conditions mostly involving anxieties that can arise when the natural alertness-promoting effects are pushed to extremes.  Some researchers have begun to explore the way the genome interacts with caffeine and it is likely that many genetic markers will surface to explain some of the individual differences in caffeine tolerance.

Here’s a great paper, “Association between ADORA2A and DRD2 Polymorphisms and Caffeine-Induced Anxiety” [doi: 10.1038/npp.2008.17] wherein polymorphisms in the adenosine A2A receptor (ADORA2A encodes the protein that caffeine binds to and antagonizes) – as well as the dopamine D2 receptor (DRD2 encodes a protein whose downstream signals are normally counteracted by A2A receptors) — show associations with anxiety after the consumption of 150mg of caffeine (about an average cup of coffee – much less than the super-size, super-rich cups that Starbucks sells).  The variants, rs5751876 (T-allele), rs2298383 (T-allele) and rs4822492 (G-allele) from the ADORA2A gene as well as rs1110976 (-/G genotype) from the DRD2 gene showed significant increases in anxiety in a test population of 102 otherwise-healthy light-moderate regular coffee drinkers.

My own 23andMe data only provides a drop of information suggesting I’m protected from the anxiety-promoting effects.  Nevertheless, I’ll avoid the super-sizes.
rs5751876 (T-allele)  C/C – less anxiety
rs2298383 (T-allele) – not covered
rs4822492 (G-allele) – not covered
rs1110976 (-/G genotype) – not covered

Reblog this post [with Zemanta]

Read Full Post »

We hope, that you choke, that you choke.
Image by Corrie… via Flickr

Coping with fear and anxiety is difficult.  At times when one’s life, livelihood or loved one’s are threatened, we naturally hightenen our senses and allocate our emotional and physical resources for conflict.  At times, when all is well, and resources, relationships and relaxation time are plentiful, we should unwind and and enjoy the moment.  But most of us don’t.  Our prized cognitive abilities to remember, relive and ruminate on the bad stuff out there are just too well developed – and we suffer – some more than others  (see Robert Saplosky’s book “Why Zebras Don’t Get Ulcers” and related video lecture (hint – they don’t get ulcers because they don’t have the cognitive ability to ruminate on past events).  Such may be the flip side to our (homo sapiens) super-duper cognitive abilities.

Nevertheless, we try to understand our fears and axieties and understand their bio-social-psychological bases. A recent paper entitled, “A Genetically Informed Study of the Association Between Childhood Separation Anxiety, Sensitivity to CO2, Panic Disorder, and the Effect of Childhood Parental Loss” by Battaglia et al. [Arch Gen Psychiatry. 2009;66(1):64-71] brought to mind many of the complexities in beginning to understand the way in which some individuals come to suffer more emotional anguish than others.  The research team addressed a set of emotional difficulties that have been categorized by psychiatrists as “panic disorder” and involving sudden attacks of fear, sweating, racing heart, shortness of breath, etc. which can begin to occur in early adulthood.

Right off the bat, it seems that one of the difficulties in understanding such an emotional state(s) are the conventions (important for $$ billing purposes) used to describe the relationship between “healthy” and “illness” or “disorder”.  I mean, honestly, who hasn’t experienced what could be described as a mild panic disorder once or twice?  I have, but perhaps that doesn’t amount to a disorder.  A good read on the conflation of normal stress responses and disordered mental states is “Transforming Normality into Pathology: The DSM and the Outcomes of Stressful Social Arrangements” by Allan V. Horwitz.

Another difficulty in understanding how and why someone might experience such a condition has to do with the complexities of their childhood experience (not to mention genes). Child development and mental health are inextrictably related, yet, the relationship is hard to understand.  Certainly, the function of the adult brain is the product of countless developmental unfoldings that build upon one another, and certainly there is ample evidence that when healthy development is disrupted in a social or physical way, the consequences can be very unfortunate and long-lasting. Yet, our ability to make sense of how and why an individual is having mental and/or emotional difficulty is limited.  Its a complex, interactive and emergent set of processes.

What I liked about the Battaglia et al., article was the way in which they acknowledged all of these complexities and – using a multivariate twin study design – tried to objectively measure the effects of genes and environment (early and late) as well as candidate biological pathways (sensitivity to carbon dioxide).  The team gathered 346 twin pairs (equal mix of MZ and DZ) and assessed aspects of early and late emotional life as well as the sensitivity to the inhalation of 35% CO2 (kind of feels like suffocating and is known to activate fear circuitry perhaps via the ASC1a gene).   The basic notion was to parcel out the correlations between early emotional distress and adult emotional distress as well as with a very specific physiological response (fear illicited by breathing CO2).  If there were no correlation or covariation between early and late distress (or the physiological response) then perhaps these processes are not underlain by any common mechanism.

However, the team found that there was covariation between early life emotion (criteria for separation anxiety disorder) and adult emotion (panic disorder) as well as the physiological/fear response illicited by CO2.  Indeed there seems to be a common, or continuous, set of processes whose disruption early in development can manifest as emotional difficulty later in development.  Furthermore, the team suggests that the underlying unifying or core process is heavily regulated by a set of additive genetic factors.  Lastly, the team finds that the experience of parental loss in childhood increased (but not via an interaction with genetic variation) the strength of the covariation between early emotion, late emotion and CO2 reactivity.  The authors note several limitations and cautions to over-interpreting these data – which are from the largest such study of its kind to date.

For individuals who are tangled in persistent ruminations and emotional difficulties, I don’t know if these findings help.  They seem to bear out some of the cold, cruel logic of life and evolution – that our fear systems are great at keeping us alive when we’ve had adverse experience in childhood, but not necessarily happy.  On the other hand, the covariation is weak, so there is no such destiny in life, even when dealt unfortunate early experience AND genetic risk.  I hope that learning about the science might help folks cope with such cases of emotional distress.

Reblog this post [with Zemanta]

Read Full Post »