Posts Tagged ‘Basal Ganglia’


Learning to read emotions and faces is important for our well-being.  For some of us, the act of gazing into another person’s eyes is innately rewarding … especially if they are smiling.  New mothers and their infants can be found locked in each others smiling countenance … thus strengthening the developing neural pathways upon which the infant’s future social skills will grow.

One component of these neural pathways is the CNR1 gene expressed in the striatum and other brain regions that process rewarding and positively-reinforcing stimuli.  For most of us, a happy smiling face is positively rewarding … moreso with certain CNR1 genotypes.

From Drs. Baron-Cohen and Chakrabarti:

“A comparison of these results with those from our earlier fMRI study reveals that for the SNP rs806377, the allelic group (CC) associated with the highest striatal response is also associated with the longest gaze duration for happy faces. For rs806380, the allelic group associated with the highest striatal response (GG) is also associated with the longest gaze duration for happy faces.”

My 23andMe profile shows both the long-gaze CC and GG genotypes for rs806377 and rs806380.  Mmmmkay … I guess this would be a good time to apologize to all the girls I inappropriately stared at in the cafeteria back in college … even though you weren’t usually smiling back at me.  I guess my CNR1 and striatum were pretty overactive.

Read Full Post »

Image by theloushe via Flickr

** PODCAST accompanies this post**

I have a little boy who loves to run and jump and scream and shout – a lot.  And by this, I mean running – at full speed and smashing his head into my gut,  jumping – off the couch onto my head,  screaming – spontaneous curses and R-rated body parts and bodily functions.  I hope you get the idea.  Is this normal? or (as I oft imagine) will I soon be sitting across the desk from a school psychologist pitching me the merits of an ADHD diagnosis and medication?

Of course, when it comes to behavior, there is not a distinct line one can cross from normal to abnormal.  Human behavior is complex, multi-dimensional and greatly interpreted through the lens of culture.  Our present culture is highly saturated by mass-marketing, making it easy to distort a person’s sense of “what’s normal” and create demand for consumer products that folks don’t really need (eg. psychiatric diagnoses? medications?).   Anyhow, its tough to know what’s normal.  This is an important issue to consider for those (mass-marketing hucksters?) who might be inclined to promote genetic data as “hard evidence” for illness, disorder or abnormality of some sort.

With this in mind, I really enjoyed a recent paper by Stollstorff et al., “Neural response to working memory load varies by dopamine transporter genotype in children” [doi:10.1016/j.neuroimage.2009.12.104] who asked how the brains of healthy children functioned, even though they carry a genotype that has been widely associated with the risk of ADHD.  Healthy children who carry genetic risk for ADHD. Hmm, might this be my boy?

The researchers looked at a 9- vs. 10-repeat VNTR polymorphism in the 3′-UTR of the dopamine transporter gene (DAT1).  This gene – which encodes the very protein that is targeted by so many ADHD medications – influences the re-uptake of dopamine from the synaptic cleft.  In the case of 10/10 genotypes, it seems that DAT1 is more highly expressed, thus leading to more re-uptake and hence less dopamine in the synaptic cleft.  Generally, dopamine is needed to enhance the signal/noise of neurotransmission, so – at the end of the day – the 10/10 genotype is considered less optimal than the 9/9-repeat genotype.  As noted by the researchers, the ADHD literature shows that the 10-repeat allele, not the 9-repeat, is most often associated with ADHD.

The research team asked these healthy children (typically developing children between 7 and 12 years of age) to perform a so-called N-back task which requires that children remember words that are presented to them one-at-a-time.  Each time a new word is presented, the children had to decide whether that word was the same as the previous word (1-back) or the previous, previous word (2-back).  Its a maddening task and places an extreme demand on neural circuits involved in active maintenance of information (frontal cortex) as well as inhibition of irrelevant information that occurs during updating (basal ganglia circuits).

As the DAT1 protein is widely expressed in the basal ganglia, the research team asked where in the brain was variation in the DAT1 (9- vs. 10-repeat) associated with neural activity?  and where was there a further difference between 1-back and 2-back?  Indeed, the team finds that brain activity in many regions of the basal ganglia (caudate, putamen, substantia nigra & subthalamic nucleus) were associated with genetic variation in DAT1.  Neat!  the gene may be exerting an influence on brain function (and behavior) in healthy children, even though they do not carry a diagnosis.  Certainly, genes are not destiny, even though they do influence brain and behavior.

What was cooler to me though, is the way the investigators examined the role of genetic variation in the 1-back (easy or low load condition) vs. 2-back (harder, high-load condition) tasks.  Their data shows that there was less of an effect of genotype on brain activation in the easy tasks.  Rather, only when the task was hard, did it become clear that the basal ganglia in the 10/10 carriers was lacking the necessary brain activation needed to perform the more difficult task.  Thus, the investigators reveal that the genetic risk may not be immediately apparent under conditions where heavy “loads” or demands are not placed on the brain.  Cognitive load matters when interpreting genetic data!

This result made me think that genes in the brain might be a lot like genes in muscles.  Individual differences in muscle strength are not associated with genotype when kids are lifting feathers.  Only when kids are actually training and using their muscles, might one start to see that some genetically advantaged kids have muscles that strengthen faster than others.  Does this mean there is a “weak muscle gene” – yes, perhaps.  But with the proper training regimen, children carrying such a “weak muscle gene” would be able to gain plenty of strength.

I guess its off to the mental and physical gyms for me and my son.

** PODCAST accompanies this post** also, here’s a link to the Vaidya lab!

Reblog this post [with Zemanta]

Read Full Post »

Novelty candles may be used.
Image via Wikipedia

Everyone has a birthday right. Its the day you (your infant self) popped into the world and started breathing, right?  But what about the day “you” were born – that is – “you” in the more philosophical, Jungian, spiritual, social, etc. kind of a way when you became aware of being in some ways apart from others and the world around you.  In her 1997 paper, “The Basal Ganglia and Cognitive Pattern Generators“, Professor Ann Graybiel writes,

The link between intent and action may also have a quite specific function during development. This set of circuits may provide part of the neural mechanism for building up cognitive patterns involving recognition of the self. It is well documented that, as voluntary motor behaviors develop and as feedback about the consequences of these behaviors occurs, the perceptuomotor world of the infant develops (Gibson 1969). These same correlations among intent, action, and consequence also offer a simple way for the young organism to acquire the distinction between actively initiated and passively received events. As a result, the infant can acquire the recognition of self as actor. The iterative nature of many basal ganglia connections and the apparent involvement of the basal ganglia in some forms of learning could provide a mechanism for this development of self-awareness.

As Professor Graybiel relates the “self” to function in the basal-ganglia and the so-called cortico-thalamic basal-ganglia loops – a set of parallel circuits that help to properly filter internal mental activity into specific actions and executable decisions – I got a kick out of a paper that describes how the development of the basal-ganglia can go awry for cells that are born at certain times.

Check out the paper, “Modular patterning of structure and function of the striatum by retinoid receptor signaling” by Liao et al.   It reveals that mice who lack a certain retinoic acid receptor gene (RARbeta) have a type of defective neurogenesis in late-born cells that make up a part of the basal ganglia (striatum) known as a striosome.  Normally, the authors say, retinoic acid helps to expand a population of late-born striosomal cells, but in the RARbeta mutant mice, the rostral striosomes remain under-developed.   When given dopaminergic stimulation, these mutant mice showed slightly less grooming and more sterotypic behaviors.

So when was “my self’s” birthday?  Was it when these late-born striosomal cells were, umm, born?  Who knows, but I’m glad my retinoic acid system was intact.

Reblog this post [with Zemanta]

Read Full Post »

MFrankIf you’re interested in the neurobiology of learning and decision making, then you might be interested in this brief interview with Professor Michael Frank who runs the Laboratory of Neural Computation and Cognition at Brown University.

From his lab’s website: “Our research combines computational modeling and experimental work to understand the neural mechanisms underlying reinforcement learning, decision making and working memory. We develop biologically-based neural models that simulate systems-level interactions between multiple brain areas (primarily basal ganglia and frontal cortex and their modulation by dopamine). We test theoretical predictions of the models using various neuropsychological, pharmacological, genetic, and neuroimaging techniques.”

In this interview, Dr. Frank provides some overviews on how genetics fits into this research program and the genetic results in his recent research article “Prefrontal and striatal dopaminergic genes predict individual differences in exploration and exploitation”. Lastly, some lighthearted, informal thoughts on the wider implications and future uses of genetic information in decision making.

To my mind, there is no one else in the literature who so seamlessly and elegantly interrelates genetics with the modern tools of cognitive science and computational neurobiology.  His work really allows one to cast genetic variation in terms of its influence on neural computation – which is the ultimate way of understanding how the brain works.  It was a treat to host this interview!

Click here for the podcast and here, here, here for previous blog posts on Dr. Frank’s work.

Reblog this post [with Zemanta]

Read Full Post »

B.F.Image via Wikipedia

I’m not sure what Skinner would have thought, but its clear that, nowadays, mechanisms of behavior can be understood in terms of dynamic changes in neural systems and, furthermore, that individual differences in these neural dynamics are heavily regulated by genetic variation. Consider the recent paper by Lobo et al., “Genetic control of instrumental conditioning by striatopallidal neuron–specific S1P receptor Gpr6(DOI). The authors use molecular genetics to seek out and find key genetic regulators of a specific and fundamental form of learning – operant or instrumental conditioning, pioneered by B.F. Skinner – wherein an individual performs an act and, afterwards, receives (+ or -) reinforcing feedback. This type of learning is distinct from classical conditioning where, for example, Pavlov’s dogs heard a bell before dinner and eventually began to salivate at the sound of the bell. In classical conditioning, the cue comes before the target, whereas in operant conditioning, the feedback comes after the target. Interestingly, the brain uses very different neural systems to process these different temporal contingencies and Lobo and company dive straight into the specific neural circuits – striatopallidal medium spiny neurons – to identify genes that are differentially expressed in these cells as compared to other neurons and, in particular, striatonigral medium spiny neurons. The GPR6 gene was found to be the 6th most differentially expressed gene in these cells and resultant knockout mice, when placed in an operant chamber, were much faster than control animals in learning the bar press association with a sugar pellet reward. The expression of GPR6 in striatopallidal cells predicts that they should have a normal function in inhibiting or slowing down such associations, so it makes sense that the GPR6 knockout animals are faster to learn these associations. This is one of the first genes whose function seems specifcially linked to a core cognitive process – Skinner might have been impressed after reading the paper.

Reblog this post [with Zemanta]

Read Full Post »