Feeds:
Posts
Comments

Posts Tagged ‘bipolardisorder’

Twin studies have long suggested that genetic variation is a part of healthy and disordered mental life.  The problem however – some 10 years now since the full genome sequence era began – has been finding the actual genes that account for this heritability.

It sounds simple on paper – just collect lots of folks with disorder X and look at their genomes in reference to a demographically matched healthy control population.  Voila! whatever is different is a candidate for genetic risk.  Apparently, not so.

The missing heritability problem that clouds the birth of the personal genomes era refers to the baffling inability to find enough common genetic variants that can account for the genetic risk of an illness or disorder.

There are any number of reasons for this … (i) even as any given MZ and DZ twin pair shares genetic variants that predispose them toward the similar brains and mental states, it may be the case that different MZ and DZ pairs have different types of rare genetic variation thus diluting out any similar patterns of variation when large pools of cases and controls are compared …  (ii) also, the way that the environment interacts with common risk-promoting genetic variation may be quite different from person to person – making it hard to find variation that is similarly risk-promoting in large pools of cases and controls … and many others I’m sure.

One research group recently asked whether the type of common genetic variation(SNP vs. CNV) might inform the search for the missing heritability.  The authors of the recent paper, “Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls” [doi:10.1038/nature08979] looked at an alternative to the usual SNP markers – so called common copy number variants (CNVs) – and asked if these markers might provide a stronger accounting for genetic risk.  While a number of previous papers in the mental health field have indeed shown associations with CNVs, this massive study (some 3,432 CNV probes in 2000 or so cases and 3000 controls) did not reveal an association with bipolar disorder.  Furthermore, the team reports that common CNV variants are already in fairly strong linkage disequilibrium with common SNPs and so perhaps may not have reached any farther into the abyss of rare genetic variation than previous GWAS studies.

Disappointing perhaps, but a big step forward nonetheless!  What will the personal genomes era look like if we all have different forms of rare genetic variation?

Reblog this post [with Zemanta]

Read Full Post »

Crocus (cropped)
Image by noahg. via Flickr

If you’ve started to notice the arrival of spring blossoms, you may have wondered, “how do the blossoms know when its spring?”  Well, it turns out that its not the temperature, but rather, that plants sense the length of the day-light cycle in order to synchronize their  own life cycles with the seasons.  According to the photoperiodism entry for wikipedia, “Many flowering plants use a photoreceptor protein, such as phytochrome or cryptochrome, to sense seasonal changes in night length, or photoperiod, which they take as signals to flower.”

It turns out that humans are much the same. Say wha?!

Yep, as the long ago descendants of single cells who had to eek out a living during day (when the sun emits mutagenic UV radiation) and night cycles, our very own basic molecular machinery that regulates the transcription, translation, replication and a host of other cellular functions is remarkably sensitive – entrained – in a clock-like fashion to the rising and setting sun.  This is because, in our retinas, there are light-sensing cells that send signals to the suprachiasmatic nucleus (SCN) which then – via the pineal gland – secretes systemic hormones such as melatonin that help synchronize cells and organs in your brain and body.  When this process is disrupted, folks can feel downright lousy, as seen in seasonal affective disorder (SAD), delayed sleep phase syndrome (DSPS) and other circadian rhythm disorders.

If you’re skeptical, consider the effects of genetic variation in genes that regulate our circadian rhythms, often called “clock” genes – very ancient genes that keep our cellular clocks synchronized with each other and the outside environment.  Soria et al., have a great paper entitled, “Differential Association of Circadian Genes with Mood Disorders: CRY1 and NPAS2 are Associated with Unipolar Major Depression and CLOCK and VIP with Bipolar Disorder” [doi: 10.1038/npp.2009.230] wherein they reveal that normal variation in these clock genes is associated with mood regulation.

A few of the highlights reported are rs2287161 in the CRY1 gene,  rs11123857 in the NPAS2 gene, and rs885861 in the VIPR2 gene – where the C-allele, G-allele and C-allele, respectively, were associated with mood disorders.

I’m not sure how one would best interpret genetic variation of such circadian rhythm genes.  Perhaps they index how much a person’s mood could be influenced by changes or disruptions to the normal rhythm??  Not sure.  My 23andMe data shows the non-risk AA genotype for rs11123857 (the others are not covered by 23andMe).

Reblog this post [with Zemanta]

Read Full Post »