Feeds:
Posts
Comments

Posts Tagged ‘Mental disorder’

Yankee Doodle
Image via Wikipedia

Commuting to work is a total drag.  Commuting to work in New York City is not just a total drag, but THE definitive commuting nightmare.  Still, when one ponders the masses of people (more than 2 million each day) who tread in, out and around Manhattan, its pretty remarkable that one can get in to work and home again.

Consider then, the human brain, with 100 billion neuons and 1,000 trillion synapses – all of which need constant tender loving care and maintenance to keep firing along.  In some cases, the commute to these synapses can be quite long – even for a molecule (eg. if a motor neuron were as wide as my car, the commute from the nucleus to the presynaptic membrane would be about 10 miles, which is about how long I must travel to get to work).  Is the brain better able to transport cargo from home (the nucleus where lots of the basic materials are produced) to work (synaptic membranes which carry out information transfer) ?

I certainly hope so.  But, like my own commute, it seems the human brain can have commuting nightmares of its own.  One of the main transport vehicles in the brain is a molecule called Kinesin which literally walks (see the movie below) along microtubule tracks and delivers its cargo in little molecular satchels called protein transport vessicles.  One of the components of these transport vessicles, a protein known as piccolo,  is expressed in presynaptic zones and may be important for recycling presynaptic vessicles – as well as mental health.

Indeed, what might happen if the normal process of vessicle transport and synaptic maintenance were disrupted in the brain – a commuting debacle of sorts ? Well, Sullivan and colleagues [doi: 10.1038/mp.2008.125] report that a genome-wide association study of major depressive disorder yields piccolo (PCLO) as one of its major findings.  The single nucleotide polymorphism rs2522833, which encodes a serine to alanine substitution near the calcium binding region (amino acid #4814) of PCLO was one of the most significant findings in the original study and a follow-up of a different case/control population study on major depressive disorder. The change from alanine to serine is notable, since the addition of N-acetylglucosamine to serine residues is a common mechanism for regulating intracellular traffic.

My 23andMe profile shows an AA for this site, which is the serine/serine form of PCLO (the form which can be modified by GlcNA  -yay!) rather than the alanine/alanine form. This (A) allele is indicated as the major allele by the authors although the AA genotype is less common among individuals of European and Asian ethnicity, but quite common in sub-Saharan Africa.  The authors don’t reveal which allele is associated with an increased risk of depression, but I already know the answer – I’ll never recover from the depression of my own commuting nightmare.

Reblog this post [with Zemanta]

Read Full Post »

The visual dorsal stream (green) and ventral s...
Image via Wikipedia

One of the longstanding puzzles of brain development is why, in some cases, individuals with developmental disabilities sometimes show enhanced function, rather than a more typical loss of cognitive function.  In the case of Williams Syndrome – which is caused by a hemizygous deletion of a cluster of about 25 genes on 7q11.23 – children show a mild form of mental retardation but also a notable increase in gregarious and social behaviorHow might a genetic deletion lead to a gain of function ? In a recent paper by Sarpal and colleagues [doi:10.1093/cercor/bhn004], they explore the role of the visual cortex and its role in feeding and filtering information to emotional  regions of the brain.

From its receipt of visual information from the eyes – say perhaps, you’re looking at someone’s face, the primary visual cortex parses information into 2 separate streams – a dorsal stream which is good at processing “where” information related to location; and a ventral stream which is good at processing “what”information related to identity and recognition – and moreover, provides inputs to the prefrontal and amygdala (brain regions which are important for social behaviors). What if the genes deleted in Williams Syndrome altered the development of a part of visual cortex that participates in early visual processing to alter the relative balance of dorsal to ventral processing ?  Might it result in a an individual who was better than usual at processing objects (faces) and also showing related emotional traits ? Indeed, this has been a longstanding hypothesis that has since been supported by findings that show relatively intact ventral stream processing but disrupted dorsal stream processing.

In their current paper, Sarpal and colleagues measured brain activity as well as correlations of activity (connectivity) between brain regions as patients with WS passively viewed visual objects (faces and houses).  They report that connections from early visual processing areas (fusiform and parahippocampal gyrus) in WS are actually weaker to the frontal cortex and amygdala.  Since activation of the frontal cortex and amygdala are associated with inhibition and fear, it may be case that the weaker connections from early visual areas to these regions gives rise to the type of gregarious and prosocial (a lack of fear and inhibition) behavior seen in WS.   In further pinpointing where in the brain the genes for WS might be causing a developmental change, the authors point to the ventral lip of the collateral sulcus, an area situated between the fusiform and parahippocampal gyri.  This may be the spot to more closely examine the role of genes such as LIMK1 – a gene that participates in the function of the actin cytoskeleton (an important process in synaptic formation).

This lecture by V.S. Ramachandran covers some of these pathways with respect to Capgras Syndrome.

Reblog this post [with Zemanta]

Read Full Post »

Walther Flemming's 1882 diagram of eukaryotic ...Image via Wikipedia Amidst all the genome-wide ‘snp-ing’ going on of late (my 23-and-me data should arrive in a couple of weeks), Walsh and colleagues provide an incredible trove of structural variation (deletions/insertions in the size range of more than 100kbp but less than 100Mbp) that is 3- to 4-fold enriched in patients with adult onset and childhood onset schizophrenia. Their paper, “Rare Structural Variants Disrupt Multiple Genes in Neurodevelopmental Pathways in Schizophrenia” (DOI 10.1126/science.1155174) uses a variety of genome hybriziation techniques to map novel variants and finds, amazingly, that many of the hits are within genes that function in common pathways of brain development and synaptic function. The authors admit that it is hard to ascribe a population risk value to any one of these variants, but the biochemical pathways suggest that the genes that were identified by this method deserve a great deal of attention in the basic and clinical genetic research community.

Reblog this post [with Zemanta]

Read Full Post »

Dopamine receptor D4
Image via Wikipedia

Attention Deficit Hyperactivity Disorder is one of the most widespread psychiatric diagnoses in children. Parents who are faced with the decision to medicate or not medicate their children may wonder if their child – given a bit more time – won’t just “grow out of it”, as many children seem to do. With this in mind, it would obviously be helpful to have biomarkers that could predict whether certain children are more likely to simply acquire better attentional control on their own, and those children that might not. In their paper, “Polymorphisms of the Dopamine D4 Receptor, Clinical Outcome, and Cortical Structure in Attention-Deficit/Hyperactivity Disorder” (Arch Gen Psychiatry Vol 64 (no. 8), Aug 2007) a veritable dream team of child developmental neuroscientists working across several medical institutions report on two such biomarkers. One biomarker is the thickness of the orbitofrontal cortex and posterior parietal cortex. MRI-based measurments of these parts of the brain (just about 5mm thick!) show that children who carry a diagnosis of ADHD have a thinner cortical sheet in these regions. Another biomarker is genetic variation in an intracytoplasmic loop of the G-protein coupled dopamine D4 receptor (DRD4). Children with ADHD are more likely to carry a longer 7-repeat version of this VNTR polymorphism than the more common 4-repeat. Interestingly, the research team found that healthy children who carry the 7-repeat genetic variant also have slightly thinner cortex in the orbitofrontal and posterior parietal cortex, suggesting that this genetic variant may influence the risk of ADHD by way of an effect on cortical development. Additionally, the research team found that the cortex of ADHD children who carry this 7-repeat genetic variant “catches up” from age 8 and eventually falls within the range of healthy children by age 15. Lastly, the team reports that ADHD children who carry the 7-repeat had better clinical outcomes (albeit, many of the ADHD children in this study were treated with medication). Nevertheless, it appears that some progress has been made in identifying biomarkers that might predict favorable developmental trajectories.

Reblog this post [with Zemanta]

Read Full Post »

Fishing dock, Crow Wing Lake. Brainerd-area la...
Image via Wikipedia

Synaptic formation involves a complex series of steps including cellular movement, membrane specialization, molecular recognition, recruitment of pre- & postsynaptic docking proteins and accompanying receptors, reuptake & recycling factors. When individual components of this process are structurally unsound or misformed, it is easy to imagine that the process of synapse formation can go awry. To investigate this possibility, Fabrichny and colleagues evaluate the structure of key molecular complex that is known to influence the risk of autism spectrum disorder – a developmental disorder where synapse formation processes are known to be misregulated. In their paper, “Structural Analysis of the Synaptic Protein Neuroligin and Its b-Neurexin Complex: Determinants for Folding and Cell Adhesion”, (DOI) provide and in-depth x-ray structural assessment of a neuroligin (NLGN3/4) in complex with its target, beta-neurexin (NRXB1). This particular trans-synaptic molecular docking event is necessary for proper synapse formation and mutations in the neuroligin and neurexin genes appear to be associated with autism and mental retardation. One mutation associated with autism, Cys451Arg, is actually remote from the neurexin docking site, and rather causes problems by causing the neuroligin to get hung up in the endoplasmic reticulum. Another mutation, Gly99Ser, is located at the surface in a turn preceding the short b3 strand, and its mutation does not seem to affect folding or binding. As noted by the authors, Val403Met however, “participates in the tight parallel packing of the a2 helix onto the four-helix bundle and a mutation of this residue by a bulkier side chain may affect correct folding of the C-terminal domain and prevent formation of the functional neuroligin dimer.” This mutation then, unlike the other mutations, seems to play a more direct role in the structure of the docking event. Same disorder, same gene – different molecular mechanisms !

Reblog this post [with Zemanta]

Read Full Post »

Joan of ArcImage by dbking via Flickr Amidst the excitement of new personalized genome services, the Economist reports on fraudsters found peddling ‘personalized supplements’ based on bogus genetic testing results. This is an extreme, tragicomic example to be sure, but highlights some of the issues that can arise when confronting one’s genetic blueprint. A recent paper by Stephanis et al., “Impact of Schizophrenia Candidate Genes on Schizotypy and Cognitive Endophenotypes at the Population Level(DOI) shows that in a population of healthy individuals, those that carry common variants (such as rs760761, rs1018381, rs2619522) located in the dysbindin (DTNBP1) gene, a risk factor for schizophrenia, show minor cognitive impairments such as decreased attentional capacity, worse performance on memory tasks, and alterations in schizotypal beliefs and experiences. Thus, it would seem that, common genetic variation associated with a complex psychiatric disorder can confer minor cognitive impairment in healthy individuals. As personalized genome services proliferate, healthy individuals will begin to recognize that they carry genetic risk for all kinds of ailmentsmental illness included. I admit to having cringed somewhat when typing out the blunt title of this post – fraudsters notwithstanding.

Reblog this post [with Zemanta]

Read Full Post »

Brad carves the turkey
Image by Salim Virji via Flickr

It has long been known that complex neuropsychiatric and neurodevelopmental illnesses have familial patterns of inheritance and that concordance in identical twins is greater than in fraternal twins. The genetic influences of mental illness – whilst apparent – do not, however, provide clues about which genes, of the 20,000 or so to choose from, confer risk. Hallucinations, mania, mood-swings, paranoia, disorganized thinking – to describe some of the difficulties that patients experience – do not immediately suggest specific candidate molecules. In an effort then, to pinpoint the specific neural processes that go awry in one particular complex mental illness, the The Consortium on the Genetics of Schizophrenia has published a landmark analysis of 183 nuclear families consisting of affected and unaffected siblings to address this problem. In their paper, “Initial Heritability Analyses of Endophenotypic Measures for Schizophrenia” (Arch Gen Psychiatry. 2007;64(11):1242-1250) the team examine so-called endophenotypes, often consisting of cognitive assessments designed to engage discrete, anatomically characterized neural networks in order to zero-in on where in the brain the genetic risk exerts an effect. The critical point the authors make is that these endophenotypes must be shown to be reliable, stable, and, most importantly, heritable. In other words, while many neural proceeses may go awry in schizophrenia, not all of these processes will have been influenced by genetic factors. Hence the analogy to carving up the complex system (turkey) along the proper genetic lines (joints). Their analysis showed that a great many of their candidate endophenotypes are indeed heritable, such as pre-pulse inhibition of the startle response, the antisaccade task for eye movements, Continuous Performance Test, California Verbal Learning Test, Letter-Number Sequencing test, Abstraction and Mental Flexibility, Face Memory, Spatial Memory, Spatial Processing, Sensorimotor Dexterity, and Emotion Recognition. Other processes such as suppression of the P50 ERP was not found to be heritable, and thus may not be a process that is affected by genetic risk. Interestingly, as reported by the authors, “The genetic correlations observed between the CVLT and LNS, between Abstraction and Mental Flexibility and Spatial Memory, and between Spatial Processing and the antisaccade task, CPT, LNS, and Abstraction and Mental Flexibility were significant at the P .001 level and remained significant after correction for multiple testing. These results suggest that overlapping genetic architecture (pleiotropy) underlies some of these endophenotypes”. Further dissection of these validated endophenotypes may therefore yield more specific neural processes, and perhaps specific synaptic connections, that would more readily provide clues to the molecular players in these complex developmental disabilities.

Reblog this post [with Zemanta]

Read Full Post »

By Richard Wheeler (Zephyris) 2006.Image via Wikipedia From time to time, it just seems hopeless to adhere to a reductionist strategy in the area of psychiatry and psychology. How, indeed, can our infinitely complex mind be understood in terms of tiny chemical bits ? Just when you’re ready to give up and bid adieu to Descartes and his mechanisms, along comes a reinvigorating paper like Professor Morgan Sheng’s, “Synaptic Accumulation of PSD-95 and Synaptic Function Regulated by Phosphorylation of Serine-295 of PSD-95” (DOI). This paper demonstrates that the the addition and removal of a single – that’s right, a single – phosphate group to Serine 295 of the PSD-95 protein is sufficient to activate or inhibit the recruitment of synaptic proteins such as AMPA receptors and potentiate excitatory post-synaptic current. Given that many complex mental illnesses are associated with synaptic deterioration, there seems to be great therapeutic significance to this finding. [Neuron, Vol 56, 488-502, 08 November 2007]

Reblog this post [with Zemanta]

Read Full Post »

A canna...Image by Getty Images via Daylife Psychiatrists and families that cope with mental illness have long been aware of far reaching familial risk. Although the new genomics greatly accelerates the identification of specific risk alleles; the direct functional and mechanistic connections between these tiny bits of nucleic acid and large-scale changes in neural activity and behavior is more often a matter of hand waving than hard science. Monory et al., in their article, “Genetic Dissection of Behavioural and Autonomic Effects of d9-Tetrahydrocannabinol in Mice” (doi:10.1371/journal.pbio.0050269) provide an excellent example of how to relate the effects of a given gene (the CB1 receptor) to changes in behavior (getting stoned, to put it blunt-ly) by first beginning to determine what CB1 expressing cell-types are necessary. For example, ever-mellow GABA-ergic neurons are not involved in mediating the effects of cannabinoids whilst excitatory glutamatergic neurons mediate hypolocomotor effects. Similar analyses of specific (gene x circuit) interactions will build important bridges between genetics and psychiatry. Why do the mice get to have all the fun ?

Reblog this post [with Zemanta]

Read Full Post »

Saimiri sciureus.
Image via Wikipedia

Behavioral geneticists are fond of noting that more than half of the risk for mental illness is heritable, and, fonder of the number of specific risk factors that have been identified. What is much less well known however is how these heritable factors interact with the environment to potentiate risk. Psychiatrists, on the other hand, rightly point out that children and adults who experience traumatic and social stress are also at greater risk for psychiatric illness. Indeed, brain imaging has shown a number of anatomical regions where activity declines in subjects and patients alike who experience trauma or other difficult experience. In their recent paper, “Stress-induced changes in primate prefrontal profiles of gene expression,” Karssen and colleagues take a major step towards bridging the gene-by-experience puzzle and examine how gene expression changes in response to socially stressful experience. Using a squirrel monkey model, an experimental group of males was subjected to intermittent social separation and also exposure to new roommates – conditions known to elevate cortisol levels. Using a (note the caveat here) human microarray platform and several signal analysis protocols, the investigators present several hundred genes differentially (interestingly mostly down-regulated) expressed in the frontal cortex. So – the question begs – were any of the genes identified in the Karssen study the same, or in the same pathways, as known genetic risk factors ? Yes – well sort of. The authors present several genes, including a few involved in GABA signaling, that had previously been linked via gene expression studies to mood disorders in humans. Certainly, these are attractive candidates for family- and population-based association studies.

Reblog this post [with Zemanta]

Read Full Post »

The DISC1 mouse is a major step forward in a translational research path towards understanding how genes contribute to the risk of complex mental disorders such as schizophrenia. The latest mouse (see PNAS – Dominant-negative DISC1 transgenic mice display schizophrenia-associated phenotypes detected by measures translatable to humans by Hikida et al.) attempts to replace the normal mouse gene with a human mutation. The deficits parallel human abnormalities in a remarkable way. Note, however, that Joseph Gogos and colleagues (including my one-time boss Maria Karayiorgou) have shown (see PNAS -Disc1 is mutated in the 129S6/SvEv strain and modulates working memory in mice by Hiroko et al.) that an ostensibly normal mouse inbred strain (normal, that is, if you’re inbred for one, and a mouse, for another) carries a truncated form of DISC1. Both of these mouse models show deficits in frontal cortex dependent behaviors but, together, they also demonstrate how the many interacting genes in the background can modify and ameliorate the effects of a single mutation. Do the genes that modify DISC1 in mice modify risk in humans?

Reblog this post [with Zemanta]

Read Full Post »

Mike Wigler’s team at Cold Spring Harbor Labs finds that spontaneous mutations are more prevalent in patients with autism than in patients with a first-degree relative also with autism. Perhaps the comparative genomic hybridization methods applied in this case will prove useful in sifting our spontaneous vs. ancestral forms of genetic variation in other diseases and mental disorders. Will males be assessed for rates of spontaneous mutation someday?

Reblog this post [with Zemanta]

Read Full Post »

« Newer Posts