Image via Wikipedia Like most parents, I enjoy watching my children develop and marvel at the many similarities they bear to myself and my wife. The reshuffling of physical and behavioral features is always a topic of discussion and is the definitive icebreaker during uncomfortable silences with the inlaws. In some cases, the children are blessed with the better traits, but in other cases, there’s no option but to cringe when, “Look – wow, he really has your nose – hmmm”, is muttered. Most interesting, is the unfolding of patterns of behavior that unfold slowly with age. Differences in temperament and personality can instill great pride in parents but also can be a grating source of friction. One of my F1’s has recently taken to sessions of shrill, spine rattling, screaming which I hope will pass soon.
Why ? Many parents ask. “Have WE been raising him/her to do this ? – surely that’s what the neighbors must think”. “Is it something in the family ? I heard Aunt Marie was a bit of a screamer as a child – hmmm.”
In one of several of their landmark studies on the genetic regulation of pediatric brain development, Jay Giedd and colleagues, now provide in their recent paper, “Variance Decomposition of MRI-Based Covariance Maps Using Genetically-Informative Samples and Structural Equation Modeling”, a core framework on the relative contribution of genes vs. environment for the developing cortex. The paper is part of an ongoing longitudinal study of pediatric brain development at the Child Psychiatry branch at NIMH. Some 600 children participated – including identical twins, fraternal twins, siblings and singleton children.
The team used an analytical approach known as MACAAC (Mapping Anatomical Correlations Across the Cerebral Cortex) to ask how much does the variation in a single part of the brain co-vary with other parts ? Then the team used structural equation modeling to explore how much this co-variation might differ across identical twins vs. fraternal vs. siblings vs. age-matched singleton children. In locations where there is an high genetic contribution to co-variation in cortical thickness, identical twins should co-vary more tightly than fraternal twins or siblings etc. In this way, the team were able to parse out the relative influence of genes vs. environment to the developing brain.
In general terms, the team reports that a single genetic factor accounts for the majority of variation in cortical thickness, which they note may be consistent with a major mechanism of development of cortical layers involving the migration of neurons along radial glia. Genetic co-variances across separate locations in the brain were highest in the frontal cortex, middle temporal gyrus and left supramarginal gyrus. Interestingly, when environmental covariations were observed, they were usually restricted to just one hemisphere, while genetic covariations were often observed bilaterally.
Figure 5 of this paper is really incredible, it shows which areas of the cortex are more influenced by genes vs. environment. If I can just find the areas involved in screaming, the next time one of my neighbors looks askance at my F1, I’ll be able to explain.
Leave a Reply