Feeds:
Posts
Comments

Posts Tagged ‘Art’

According to wikipedia, “Jean Philippe Arthur Dubuffet (July 31, 1901 – May 12, 1985) was one of the most famous French painters and sculptors of the second half of the 20th century.”  “He coined the term Art Brut (meaning “raw art,” often times referred to as ‘outsider art’) for art produced by non-professionals working outside aesthetic norms, such as art by psychiatric patients, prisoners, and children.”  From this interest, he amassed the Collection de l’Art Brut, a sizable collection of artwork, of which more than half, was painted by artists with schizophrenia.  One such painting that typifies this style is shown here, entitled, General view of the island Neveranger (1911) by Adolf Wolfe, a psychiatric patient.

Obviously, Wolfe was a gifted artist, despite whatever psychiatric diagnosis was suggested at the time.  Nevertheless, clinical psychiatrists might be quick to point out that such work reflects the presence of an underlying thought disorder (loss of abstraction ability, tangentiality, loose associations, derailment, thought blocking, overinclusive thinking, etc., etc.) – despite the undeniable aesthetic beauty in the work.  As an ardent fan of such art,  it made me wonder just how “well ordered” my own thoughts might be.  Given to being rather forgetful and distractable, I suspect my thinking process is just sufficiently well ordered to perform the routine tasks of day-to-day living, but perhaps not a whole lot more so.  Is this bad or good?  Who knows.

However, Krug et al., in their recent paper, “The effect of Neuregulin 1 on neural correlates of episodic memory encoding and retrieval” [doi:10.1016/j.neuroimage.2009.12.062] do note that the brains of unaffected relatives of persons with mental illness show subtle differences in various patterns of activation.  It seems that when individuals are using their brains to encode information for memory storage, unaffected relatives show greater activation in areas of the frontal cortex compared to unrelated subjects.  This so-called encoding process during episodic memory is very important for a healthy memory system and its dysfunction is correlated with thought disorders and other aspects of cognitive dysfunction.  Krug et al., proceed to explore this encoding process further and ask if a well-known schizophrenia risk variant (rs35753505 C vs. T) in the neuregulin-1 gene might underlie this phenomenon.  To do this, they asked 34 TT, 32 TC and 28 CC individuals to perform a memory (of faces) game whilst laying in an MRI scanner.

The team reports that there were indeed differences in brain activity during both the encoding (storage) and retrieval (recall) portions of the task – that were both correlated with genotype – and also in which the CC risk genotype was correlated with more (hyper-) activation.  Some of the brain areas that were hyperactivated during encoding and associated with CC genotype were the left middle frontal gyrus (BA 9), the bilateral fusiform gyrus and the left middle occipital gyrus (BA 19).  The left middle occipital gyrus showed gene associated-hyperactivation during recall.  So it seems, that healthy individuals can carry risk for mental illness and that their brains may actually function slightly differently.

As an ardent fan of Art Brut, I confess I hoped I would carry the CC genotype, but alas, my 23andme profile shows a boring TT genotype.  No wonder my artwork sucks.  More on NRG1 here.

Reblog this post [with Zemanta]

Read Full Post »

genomachino

Read Full Post »

Francis Freud

Read Full Post »

-ome rave

Read Full Post »

SOD2

Read Full Post »

ear wax gene

Read Full Post »

DNA is not destiny meme

Read Full Post »

snow

Read Full Post »

genome patents

Read Full Post »

whats in your genome?

Read Full Post »

genome scams

Read Full Post »

red purple blue

Read Full Post »

Read Full Post »

Gametes

Read Full Post »

Gene meets brain comic

Read Full Post »

Cold windows


Read Full Post »

Genes & brains art

Santa brought me ArtRage 3 … lots of fun!




Read Full Post »

Sometimes I think …

Read Full Post »

monoamine oxidase a

Read Full Post »

Some quick sketches that might help put the fast-growing epigenetics and cognitive development literature into context.  Visit the University of Utah’s Epigenetics training site for more background!

The genome is just the A,G,T,C bases that encode proteins and other mRNA molecules.  The “epi”genome are various modification to the DNA – such as methylation (at C residues) – and acetylation of histone proteins.   These changes help the DNA form various secondary and tertiary structures that can facilitate or block the interaction of DNA with the transcriptional machinery.

When DNA is highly methylated, it generally is less accessible for transcription and hence gene expression is reduced.  When histone proteins (purple blobs that help DNA coil into a compact shape) are acetylated, the DNA is much more accessible and gene expression goes up.

We know that proper epigenetic regulation is critical for cognitive development because mutations in MeCP2 – a protein that binds to methylated C residues – leads to Rett syndrome.  MeCP2 is normally responsible for binding to methylated DNA and recruiting histone de-acetylases (HDACs) to help DNA coil and condense into a closed form that is inaccessible for gene expression (related post here).

When DNA is accessible for gene expression, then it appears that – during brain development – there are relatively more synaptic spines produced (related post here).  Is this a good thing? Rett syndrome would suggest that – NO – too many synaptic spines and too much excitatory activity during brain development may not be optimal.  Neither is too little excitatory (too much inhibitory) activity and too few synaptic spines.  It is likely that you need just the right balance (related post here). Some have argued (here) that autism & schizophrenia are consequences of too many & too few synapses during development.

The sketch above illustrates a theoretical conjecture – not a scenario that has been verified by extensive scientific study. It tries to explain why epigenetic effects can, in practice, be difficult to disentangle from true (changes in the A,G,T,C sequence) genetic effects.  This is because – for one reason – a mother’s experience (extreme stress, malnutrition, chemical toxins) can – based on some evidence – exert an effect on the methylation of her child’s genome.  Keep in mind, that methylation is normal and widespread throughout the genome during development.  However, in this scenario, if the daughter’s behavior or physiology were to be influenced by such methylation, then she could, in theory, when reaching reproductive age, expose her developing child to an environment that leads to altered methylation (shown here of the grandaughter’s genome).  Thus, an epigenetic change would look much like there is a genetic variant being passed from one generation to the next, but such a genetic variant need not exist (related post here, here) – as its an epigenetic phenomenon.  Genes such as BDNF have been the focus of many genetic/epigenetic studies (here, here) – however, much, much more work remains to determine and understand just how much stress/malnutrition/toxin exposure is enough to cause such multi-generational effects.  Disentangling the interaction of genetics with the environment (and its influence on the epigenome) is a complex task, and it is very difficult to prove the conjecture/model above, so be sure to read the literature and popular press on these topics carefully.

Reblog this post [with Zemanta]

Read Full Post »

« Newer Posts - Older Posts »