Feeds:
Posts
Comments

Posts Tagged ‘Dendritic spine’

astrocyteIf you compare the left panel to the right panel, you’ll see a dendrite (grey) with dendritic spines (green) on the left-side and then, on the right-side, these spines enveloped by the membrane of an astrocyte (white).  These images were obtained from synapse-web.org who use a method known as 3D reconstruction of serial section electron microscopy – or something like that – to better understand what types of structural factors underlie normal and abnormal synaptic function.  What is so amazing to me are the delicate ruffles of the astrocyte membrane that seem to want to ensheath each spine.  Was any organelle so gently and well cared for?  Perhaps not.  These are dendritic spines afterall – the very structures that form synaptic contacts and process the neural signals – that allow us to think and function.

It turns out that astrocytes not only seem to care for dendritic spines, but also provide the essential signal that initiates the sprouting of neuronal spines in the first place.  As covered in their recent paper, “Gabapentin Receptor α2δ-1 Is a Neuronal Thrombospondin Receptor Responsible for Excitatory CNS Synaptogenesis” [doi:10.1016/j.cell.2009.09.025] Eroglu and colleagues report the discovery – in mice – of CACNA2D1 the alpha-2/delta-1 subunit of the voltage-dependent calcium channel complex encodes a protein that binds to thrombospondins (humans have THBS1 and THBS2) which are adhesive glycoproteins that mediate cell-to-cell and cell-to-matrix interactions – and are required for the formation of new dendritic spines.  When neurons are cultured in the absence of thrombospondins, they fail to produce new spines and mice that do not make thrombospondins do not make very many excitatory synaptic spines.

The interesting twist to me is that thrombospondins are secreted solely by astrocytes! The newly identified CACNA2D1 receptor – as revealed by Eroglu et al., – binds to the EGF-repeats of thrombospondin and initiates a signalling cascade that results in the sprouting of new – silent – dendritic spines.  Gabapentin, a drug that is prescribed for seizures, pain, methamphetamine addiction and many other mental health conditions appears to bind to CACNA2D1 and interfere with the binding of thrombospondin and also inhibits the formation of new spines in vitro as well during the development of somatotopic maps in the mouse whisker barrel cortex.

This seems to be an important discovery in the understanding of how cognitive development unfolds since much of the expression of thrombospondin and its effects on synaptogenesis occur in the early postnatal stages of development.  I will follow this thread in the months to come.

Reblog this post [with Zemanta]

Read Full Post »

Kali
Image via Wikipedia

Joseph LeDoux‘s book, “Synaptic Self: How Our Brains Become Who We Are” opens with his recounting of an incidental glance at a t-shirt, “I don’t know, so maybe I’m not” (a play on Descartes’ cogito ergo sum) that prompted him to explore how our brain encodes memory and how that leads to our sense of self.  More vividly, Elizabeth Wurtzel, in “Prozac Nation” recounts, “Nothing in my life ever seemed to fade away or take its rightful place among the pantheon of experiences that constituted my eighteen years. It was all still with me, the storage space in my brain crammed with vivid memories, packed and piled like photographs and old dresses in my grandmother’s bureau. I wasn’t just the madwoman in the attic — I was the attic itself. The past was all over me, all under me, all inside me.” Both authors, like many others, have shared their personal reflections on the fact that – to put it far less eloquently than LeDoux and Wurtzl – “we” or “you” are encoded in your memories, which are “saved” in the form of synaptic connections that strengthen and weaken and morph through age and experience.  Furthermore, such synaptic connections and the myriad biochemical machinery that constitute them, are forever modulated by mood, motivation and your pharmacological concoction du jour.

Well, given that my “self” or “who I think of as myself” or ” who I’m aware of at the moment writing this blog post” … you get the neuro-philosophical dilemma here … hangs ever so tenuously on the biochemical function of a bunch of tiny little proteins that make up my synaptic connections – perhaps I should get to know these little buggers a bit better.

OK, how about a gene known as kalirin – which is named after the multiple-handed Hindu goddess Kali whose name, coincidentally, means “force of time (kala)” and is today considered the goddess of time and change (whoa, very fitting for a memory gene huh?).  The imaginative biochemists who dubbed kalirin recognized that the protein was multi-handed and able to interact with lots of other proteins.  In biochemical terms, kalirin is known as a “guanine nucleotide exchange factor” – basically, just a helper protein who helps to activate someone known as a Rho GTPase (by helping to exchange the spent GDP for a new, energy-laden GTP) who can then use the GTP to induce changes in neuronal shape through effects on the actin cytoskeleton.  Thus, kalirin, by performing its GDP-GTP exchange function, helps the actin cytoskeleton to grow.  The video below, shows how the actin cytoskeleton grows and contracts – very dynamically – in dendrites that carry synaptic spines – whose connectivity is the very essence of “self”.  Indeed, there is a lot of continuing action at the level of the synapse and its connection to other synapses, and kalirin is just one of many proteins that work in this dynamic, ever-changing biochemical reaction that makes up our synaptic connections.

In their paper”Kalirin regulates cortical spine morphogenesis and disease-related behavioral phenotypes” [doi: 10.1073/pnas.0904636106] Michael Cahill and colleagues put this biochemical model of kalirin to the test, by examining a mouse whose version of kalirin has been inactivated.  Although the mice born with this inactivated form are able to live, eat and breed, they do have significantly less dense patterns of dendritic spines in layer V of the frontal cortex (not in the hippocampus however, even though kalirin is expressed there).  Amazingly, the deficits in spine density could be rescued by subsequent over-expression of kalirinHmm, perhaps a kalirin medication in the future? Further behavior analyses revealed deficits in memory that are dependent on the frontal cortex (working memory) but not hippocampus (reference memory) which seems consistent with the synaptic spine density findings.

Lastly, the authors point out that human kalirin gene expression and variation has been associated with several neuro-psychiatric conditions such as schizophrenia, ADHD and Alzheimer’s Disease.   All of these disorders are particularly cruel in the way they can deprive a person of their own self-perception, self-identity and dignity.  It seems that kalirin is a goddess I plan on getting to know better.  I hope she treats “me” well in the years to come.

Reblog this post [with Zemanta]

Read Full Post »