***PODCAST ACCOMPANIES THIS POST***
In his undergraduate writings while a student at Harvard in the early 1900’s E. E. Cummings quipped that, “Japanese poetry is different from Western poetry in the same way as silence is different from a voice”. Isabelle Alfandary explores this theme in Cummings’ poetry in her essay, “Voice and Silence in E. E. Cummings’ Poetry“, giving some context to how the poet explored the meanings and consequences of voice and silence. Take for example, his poem “silence”
silence
.is
a
looking
bird:the
turn
ing;edge, of
life
(inquiry before snow
e.e. cummings
Lately, it seems that the brain imaging community is similarly beginning to explore the meanings and consequences of the brain when it speaks (activations whilst performing certain tasks) and when it rests quietly. As Cummings beautifully intuits the profoundness of silence and rest, I suppose he might have been intrigued by just how very much the human brain is doing when we are not speaking, reading, or engaged in a task. Indeed, a community of brain imagers seem to be finding that the brain at rest has quite a lot to say – moreso in people who carry certain forms of genetic variation (related posts here & here).
A paper by Perrson and colleagues “Altered deactivation in individuals with genetic risk for Alzheimer’s disease” [doi:10.1016/j.neuropsychologia.2008.01.026] asked individuals to do something rather ordinary – to pay attention to words – and later to then respond to the meaning of these words (a semantic categorization task). This simple endeavor, which, in many ways uses the very same thought processes as used when reading poetry, turns out to activate regions of the temporal lobe such as the hippocampus and other connected structures such as the posterior cingulate cortex. These brain regions are known to lose function over the course of life in some individuals and underlie their age-related difficulties in remembering names and recalling words, etc. Indeed, some have described Alzheimer’s disease as a tragic descent into a world of silence.
In their recordings of brain activity of subjects (60 healthy participants aged 49-79), the team noticed something extraordinary. They found that there were differences not in how much the brain activates during the task – but rather in how much the brain de-activates – when participants simply stare into a blank screen at a small point of visual fixation. The team reports that individuals who carry at least one copy of epsilon-4 alleles of the APOE gene showed less de-activation of their their brain (in at least 6 regions of the so-called default mode network) compared to individuals who do not carry genetic risk for Alzheimer’s disease. Thus the ability of the brain to rest – or transition in and out of the so-called default mode network – seems impaired in individuals who carry higher genetic risk.
So, I shall embrace the poetic wisdom of E. E. Cummings and focus on the gaps, empty spaces, the vastness around me, the silences, and learn to bring my brain to rest. And in so doing, perhaps avoid an elderly descent into silence.
Leave a Reply