Feeds:
Posts
Comments

Posts Tagged ‘Epigenetics’

NYCSub 7 car exterior
Image via Wikipedia

Playa with gold NY Yankees hat worn sideways:  Man, I’ve got mad feva for the flava of these chips.

Hipster girl with multicolor wool sherpa hat:  You better watch out playa, you’ll pass on some ill health to your kids.

Playa:  Kids! I ain’t tryin’ to have no kids.  Besides, that’s some Lamarckian shit you’re talkin’.  Dads can’t pass on stuff they get from eatin’ junk food … only girls can.

Girl:  You ever hear of epigenetic reprogramming?

Playa:  You buggin’ gurrrl.  How are my sperm cells supposed to carry all that “past history” and shit to my kids.  I mean the fucked up cheeto-eating fat cells are in my ass, not my balls.  My sperm cells ain’t got nuthin’ but some nekkid DNA coiled up in them – no room for the epigenome in MY sperm babe.  Did I say my DNA was naaaked?

Girl:  You’re balls ain’t as dumb as you think.

Playa:  Oooh Shit!  Say that again!  Please!  Tell me about my sperm cells too!

Girl:  Slow down playa.  Read the paper by Carone et al., “Paternally Induced Transgenerational Environmental Reprogramming of Metabolic Gene Expression in Mammals” [DOI 10.1016/j.cell.2010.12.008].  They show that mouse fathers can pass on all kinds of crazy changes to their offspring’s liver function depending on the dad’s diet.

Playa:  Damn!  So I have to think about what I’m eating now? what I’m puttin’ into my sperm cells?

Girl:  If you want your nekkid DNA to be with me … ha ha!

Playa: Shit, that re-programming shit is messed UP!

Girl:  Don’t hate the playa, just hate the game – the epigenetic game!

Enhanced by Zemanta

Read Full Post »

Myelin Repair Foundation Logo
Image by Myelin Repair Foundation via Flickr

from Ye et al., 2009:

HDAC1/2 genes encode proteins that modify the epigenome (make it less accessible for gene expression).

When HDAC1/2 functions around the HES5 and ID2/4 (repressors of white matter development) genes, the epigenetic changes (less acetylation of chromatin) helps to repress the repressors.

This type of epigenetic repression of gene expression (genes that repress white matter development) is essential for white matter development.

Enhanced by Zemanta

Read Full Post »

remember a day before today
Image by DerrickT via Flickr

Most cells in your adult body are “terminally differentiated” – meaning that they have developed from stem cells into the final liver, or heart, or muscle or endothelial cell that they were meant to be.  From that point onward, cells are able to “remember” to stay in this final state – in part – via stable patterns of DNA methylation that reinforce the regulation of “the end state” of gene expression for that cell.  As evidence for this role of DNA methylation, it has been observed that levels of DNA methyl transferase (DNMT) decline when cells are fully differentiated and thus, cannot modify or disrupt their patterns of methylation.

NOT the case in the brain! Even though neurons in the adult brain are fully differentiated, levels of methyl transferases – DO NOT decline.  Why not? Afterall, we wouldn’t want our neurons to turn into liver cells, or big toe cells, would we?

One hypothesis, suggested by David Sweatt and colleagues is that neurons have more important things to “remember”.   They suggest in their fee and open research article, “Evidence That DNA (Cytosine-5) Methyltransferase Regulates Synaptic Plasticity in the Hippocampus” [doi: 10.1074/jbc.M511767200] that:

DNA methylation could have lasting effects on neuronal gene expression and overall functional state. We hypothesize that direct modification of DNA, in the form of DNA (cytosine-5) methylation, is another epigenetic mechanism for long term information storage in the nervous system.

By measuring methylated vs. unmethylated DNA in the promoter of the reelin and BDNF genes and relating this to electrophysiological measures of synaptic plasticity, the research team finds correlations between methylation status and synaptic plasticity.  More specifically, they find that zebularine (an inhibitor of DNMT) CAN block long-term potentiation (LTP), but NOT block baseline synaptic transmission nor the ability of synapses to fire in a theta-burst pattern (needed to induce LTP).

This suggests that the epigenetic machinery used for DNA methylation may have a role in the formation of cellular memory – but not in the same sense as in other cells in the body – where cells remember to remain in a terminally differentiated state.

In the brain, this epigenetic machinery may help cells remember stuff that’s more germane to brain function … you know … our memories and stuff.

Enhanced by Zemanta

Read Full Post »

The human brain has some 100 billion neurons.  That sounds like a lot, but I’m still keen on keeping ALL of mine healthy and in good working order.  One way that cells protect themselves from damage and untimely death is by protecting their DNA – by wrapping it up and coiling it tightly – using chromatin proteins – which keeps it away from chemical and viral damage.  This is especially important in the brain, since – unlike the skin or gut – we can’t really re-grow brain tissue once its damaged.  We have to protect the neurons we have!

Here’s the problem. In order to USE the BRAIN (to learn and remember stuff) we have to also USE the GENOME (to encode the proteins that synapses use in the process of memory formation).  When we’re thinking, we have to take our precious DNA out of its protective supercoiled, proteinaceous shell and allow the double helix to melt into single strands and expose their naked A’s, G’s, T’s and C’s to the chemical milieu (to the start the transcription process).  This is risky business damage to DNA can lead to cell death!

One might imaging that its best to carry out this precarious act quickly and in proximity to DNA repair enzymes (I’d think).  A very important job that includes: uncoiling chromatin superstructures, transcribing DNA (that encodes proteinaceous building blocks that synapses use to strengthen and weaken themselves) – and then – making sure there was no damage incurred along the way.  A BIG job that MUST get done each and every time my cells engage in learning.  Wow!  I didn’t realize that learning new stuff means I’m exposing my DNA to damage?  Hmm … I wonder if that PhD was worth it?

To perform this important job, it seems there is an amazing handyman of a molecule named poly(ADP-ribose) polymerase-1 (PARP-1).  Amazing, because it – itself – can function in many of the steps involved in uncoiling chromatin structures, transcription initiation and DNA repair.  The protein that can “do it all” … get the job done quickly and even fix any errors made along the way! It is known to function in the so-called base excision repair (BER) pathway and is also known have a role in transcription through remodeling of chromatin by ADP-ribosylating histones and relaxing chromatin structure, thus allowing transcription to occur (click here for a great open review of PARP-1).  Nice!

According to OMIM, earlier studies by Cohen-Armon et al. (2004) found that poly(ADP-ribose) polymerase-1 is activated in neurons that mediate several forms of long-term memory in Aplysia. Because poly(ADP-ribosyl)ation of nuclear proteins is a response to DNA damage in virtually all eukaryotic cells (indeed, PARP-1 knock-out mice are more sensitive to DNA damage), it was surprising that activation of the polymerase occurred during learning and was required for long-term memory. Cohen-Armon et al. (2004) suggested that the fast and transient decondensation of chromatin structure by poly(ADP-ribosyl)ation enables the transcription needed to form long-term memory without strand breaks in DNA.

A recent article in Journal of Neuroscience seems to confirm this function –  now in the mouse brain.  Histone H1 Poly[ADP]-Ribosylation Regulates the Chromatin Alterations Required for Learning Consolidation [doi:10.1523/JNEUROSCI.3010-10.2010] by Fontán-Lozano et al., examined cells in the hippocampus at different times during the learning of an object recognition paradigm.  They confirm (using a PARP-1 antagonist) that PARP-1 is needed to establish object memory and also that PARP-1 seems to contribute during the paradigm and up to 2 hours after the training session.  They suggest that the poly(ADP-ribosyl)ation of histone H1 influences whether H1 is bound or unbound and thus helps regulate the opening and closing of the chromatin so that transcription can take place. 

Nice to know that PARP-1 is on the job!  Still am wondering if the PhD was worth all the learning.  Are there trade-offs at play here?  MORE learning vs. LESS something?   Perhaps. Check out the paper by Grube and Bürkle (1992) – Poly(ADP-ribose) polymerase activity in mononuclear leukocytes of 13 mammalian species correlates with species-specific life span. This gene may influence life span!

Enhanced by Zemanta

Read Full Post »

Cinematicode wall
Image by Smeerch via Flickr

As far as science movies go, the new movie, “To Age or Not To Age” seems like a lot of fun.  The interview with Dr. Leonard Guarente suggests that the sirtuin genes play a starring role in the film.  Certainly,  an NAD+ dependent histone deacetylase – makes for a sexy movie star – especially when it is able to sense diet and metabolism and establish the overall lifespan of an organism.

One comment in the movie trailer, by Aubrey de Grey, suggests that humans may someday be able to push the physiology of aging to extreme ends.  That studies of transgenic mice over-expressing SIRT1 showed physiological properties of calorie-restricted (long lived) mice – even when fed ad libitum – suggests that something similar might be possible in humans.

Pop a pill and live it up at your local Denny’s for the next 100 years?  Sounds nice (& a lot like grad school).

Just a few twists to the plot here.  It turns out that – in the brain – SIRT1 may not function as it does in the body.  Here’s a quote from a research article “Neuronal SIRT1 regulates endocrine and behavioral responses to calorie restriction” that inactivated SIRT1 just in the brain:

Our findings suggest that CR triggers a reduction in Sirt1 activity in hypothalamic neurons governing somatotropic signaling to lower this axis, in contrast with the activation of Sirt1 by CR in many other tissues. Sirt1 may have evolved to positively regulate the somatotropic axis, as it does insulin production in β cells, to control mammalian health span and life span in an overarching way. However, the fact that Sirt1 is a positive regulator of the somatotropic axis may complicate attempts to increase murine life span by whole-body activation of this sirtuin.

To a limited extent, it seems that – in the brain – SIRT1 has the normal function of promoting aging.  Therefore, developing “pills” that are activators of SIRT1 would be good for the body, but somehow might be counteracted by what the brain would do.  Who’s in charge anyway?  Mother Nature will not make it easy to cheat her! Another paper published recently also examined the role of SIRT1 in the brain and found that – normally – SIRT1 enhances neuronal plasticity (by blocking the expression of a  micro-RNA miR-134 that binds to the mRNA of, and inhibits the translation of, synaptic plasticity proteins such as CREB).

So, I won’t be first to line up for SIRT1 “activator” pills (such as Resveratrol), but I might pop a few if I’m trying to learn something new.

Enhanced by Zemanta

Read Full Post »

Mother Nature
Image via Wikipedia

The current buzz about about GWAS  and longevity and GWAS in general has stirred up many longstanding inconvenient issues that arise when trying to interpret the results of very large, expensive and worthwhile genetic studies.  Its seems that Mother Nature does not give up her secrets without a fight.

One of the most common “inconvenient issues” is the fact that so many of the SNPs that come out of these studies are located far away from protein-encoding exons.  This ubiquitous observation is almost always followed with, “well, maybe its in linkage disequilibrium with a more functional SNP” or something along these lines – wherein the authors get an automatic pass.  OK by me.

Another “inconvenient issue” is the fact that many of these SNPs are of minimal effect and don’t exactly add up or interact to account for the expected heritability.  This problem of “missing heritability” is a big one (see some new insights in the latest issue of Nature Genetics) leading many to suspect that the effects of genes are dependent on complex interactions with each other and the environment.

A recent paper, “A map of open chromatin in human pancreatic islets” [doi:10.1038/ng.530] by Gaulton and colleagues caught my eye because it seems to shed light on both of these particular inconvenient issues.  The authors find that the diabetes risk variant rs7903146 in the TCF7L2 gene is both located in an intron and subject to epigenetic regulation (our sedentary, high-fat, high-stress lives can potentially interact with the genome by causing epigenetic change).

It appears that the T-allele of the intronic rs7903146 is correlated with a more open, transcription-prone form of DNA/chromatin than is the C-allele. The authors confirmed this using both chromatin mapping and gene expression assays on pancreatic islet cells harvested from non-diabetic donors and islet cell-lines.  The results suggest that the risk-conferring T-allele of this intronic SNP may be driving expression (gain-of-function) of the TCF7L2 gene.  What types of environmental stimuli might also impact the opening and closing of chromatin at this location?

This type of interplay of environment, genome and epigenome is probably rampant in the area of brain and behavior – so perhaps the study of diabetes will provide some clues to the many GWAS SNPs that are far away from exons. More on the genetics of epigenetics here.

Enhanced by Zemanta

Read Full Post »

Nucleosome structure.
Image via Wikipedia

pointer to the NOVA program on epigenetics “Ghost in Your Genes” (YouTube link here).  Fantastic footage.  Great intro to epigenetics and so-called trans-generational effects and the inheritance of epigenetic marks – which, in some cases – are left by adverse or stressful experience.  A weird, wild, game-changing concept indeed – that my grandchildren could inherit epigenetic changes induced in my genome by adverse experience.

Reblog this post [with Zemanta]

Read Full Post »

« Newer Posts - Older Posts »