Feeds:
Posts
Comments

Posts Tagged ‘Mental health’

DON’T tell the grant funding agencies, but, in at least one way, the effort to relate genetic variation to individual differences in cognitive function is a totally intractable waste of money.

Let’s say we ask a population of folks to perform a task – perhaps a word memory task – and then we use neuroimaging to identify the areas of the brain that (i) were associated with performance of the task, and (ii) were not only associated with performance, but were also associated with genetic variation in the population.  Indeed, there are already examples of just this type of “imaging-genetic” study in the literature.  Such studies form a crucial translational link in understanding how genes (whose biochemical functions are most often studied in animal models) relate to human brain function (usually studied with cognitive psychology). However, do these genes relate to just this task? What if subjects were recalling objects? or feelings?  What if subjects were recalling objects / experiences / feelings / etc. from their childhoods?  Of course, there are thousands of common cognitive operations one’s brain routinely performs, and, hence, thousands of experimental paradigms that could be used in such “imaging-genetic” gene association studies.  At more than $500/hour (some paradigms last up to 2 hours) in imaging costs, the translational genes-to-cognition endeavor could get expensive!

DO tell the grant funding agencies that this may not be a problem any longer.

The recent paper by Liu and colleagues “Prefrontal-Related Functional Connectivities within the Default Network Are Modulated by COMT val158met in Healthy Young Adults” [doi: 10.1523/jneurosci.3941-09.2010] suggests an approach that may simplify matters.  Their approach still involves genotyping (in this case for rs4680) and neuroimaging.  However, instead of performing a specific cognitive task, the team asks subjects to lay in the scanner – and do nothing.  That’s right – nothing – just lay still with eyes closed and just let the mind wander and not to think about anything in particular – for a mere 10 minutes.  Hunh?  What the heck can you learn from that?

It turns out that one can learn a lot.  This is because the neural pathways that the brain uses when you are actively doing something (a word recall task) are largely intact even when you are doing nothing.  Your brain does not “turn off” when you are laying still with your eyes closed and drifting in thought.  Rather, your brain slips into a kind of default pattern, described in studies of  “default networks” or “resting-state networks” where wide-ranging brain circuits remain dynamically coupled and actively exchange neural information.  One really great paper that describes these networks is a free-and-open article by Hagmann et al., “Mapping the Structural Core of Human Cerebral Cortex” [doi: 10.1371/journal.pbio.0060159] from which I’ve lifted their Figure 1 above.  The work by Hagmann et al., and others show that the brain has a sort of “connectome” where there are thousands of “connector hubs” or nodes that remain actively coupled (meaning that if one node fires, the other node will fire in a synchronized way) when the brain is at rest and when the brain is actively performing cognitive operations.  In a few studies, it seems that the strength of functional coupling in certain brain areas at rest is correlated (positively and negatively) with the activation of these areas when subjects are performing a specific task.

In the genetic study reported by Liu and colleagues, they found that genotype (N=57) at the dopaminergic COMT gene correlated with differences in the functional connectivity (synchronization of firing) of nodes in the prefrontal cortex.  This result is eerily similar to results found for a number of specific tasks (N-back, Wisconsin Card Sorting, Gambling, etc.) where COMT genotype was correlated with the differential activation of the frontal cortex during the task.  So it seems that one imaging paradigm (lay still and rest for 10 minutes) provided comparable insights to several lengthy (and diverse) activation tasks.  Perhaps this is the case. If so, might it provide a more direct route to linking genetic variation with cognitive function?

Liu and colleagues do not comment on this proposition directly nor do they seem to be over-interpreting their results in they way I have editorialized things here.  They very thoughtfully point out the ways in which the networks they’ve identified and similar and different to the published findings of others.  Certainly, this study and the other one like it are the first in what might be a promising new direction!

Reblog this post [with Zemanta]

Read Full Post »

silver copy of a 1930 penny
Image via Wikipedia

In their forecast “The World in 2010” special issue, the Economist points to “The looming crisis in human genetics” wherein scientists will reluctantly acknowledge that, even with super-cheap genome sequencing tools, we may not soon understand how genetic variation contributes to complex illness.  The argument is a valid one to be sure, but only time will tell.

A paper I read recently, reminded me of the long hard slog ahead in the area of genomics and psychiatric illness.  The authors in “Association of the Glutamate Transporter Gene SLC1A1 With Atypical Antipsychotics–Induced Obsessive-compulsive Symptoms” [Kwon et al., (2009) Arch Gen Psychiatry 66(11)] are trying to do something very important.  They would like to understand why certain (most) psychiatric medications have adverse side-effects and how to steer patients clear of adverse side-effects.  This is because, nowadays, a patient learns via a drawn-out trial-and-error ordeal about which medications he/she can manage the benefits/costs.

Specifically, the authors focused their efforts on so-called obsessive-compulsive symptoms that can arise from treatment with atypical antipsychotic medications.  Working from 3 major medical centers (Samsung Medical Center, Seoul National University Hospital and Asan Medical Center) Kwon et al., were able to cobble together a mere 40 patients who display these particular adverse side-effects and matched them with 54 patients based on several demographic and medication-based criteria.  Keep in mind that most genetic studies use upwards of 1,000 samples and still – hardly – are able to obtain significant effects.

Nevertheless, the authors note that the glutamate transporter gene (SLC1A1 or EAAC1) is a most logical candidate gene, being a located in a region mapped for obsessive-compulsive disorder risk and also a gene that appears to be down-regulated in response to atypical anti-psychotic treatment (particularly clozapine).  A series of statistical association tests for 10 SNPs in this gene reveal that two SNPs (rs2228622 and rs3780412) and a 3-SNP haplotype (the A/C/G haplotype at rs2228622-rs3780413-rs3780412) showed modestly significant association (about 4-fold higher risk) with the adverse symptoms.

To me, this is a very noteworthy finding.  A lot of work went into a very important problem – perhaps THE most pressing problem for patients on anti-psychotic medications today – and the results, while only of modest significance, are probably biologically valid.  The authors point out that rs2228622 and rs3780412 have previously been associated with OCD in other studies.

But when you compare these modest results (that these authors fought hard to obtain) with the big promises of the genomic era (as noted in the Economist article), well then, the results seem rather diminutive.  Will all patients who carry the risk haplotype be steered away from atypical antipsychotics?  Will big pharma (the authors of this paper disclose a great many ties to big pharma) support the fragmentation of their blockbuster drug markets into a hundred sub-populations?  I doubt it.  But some doctors and patients will experiment and continue to explore this avenue of inquiry – and it will take a long time to work out.  Better check back in 2020.

Reblog this post [with Zemanta]

Read Full Post »

John Keats, by William Hilton (died 1839). See...
Image via Wikipedia

If you slam your hand in the car door and experience physical pain, medical science can offer you a “pain killer!“.  Certainly morphine (via its activation of the mu opioid receptor (OPRM1)) will make you feel a whole lot better.  However, if your boyfriend or girlfriend breaks up with you and you experience emotional pain, its not so clear whether medical science has, or should offer, such a treatment.  Most parents and doctors would not offer a pain killer.  Rather, it’s off to sulk in private, perhaps finding relief in the writings of countless poets who’ve attested to the acute pain that ensues when emotional bonds are broken.

Love hurts! But why should this be? Why does the loss of love hurt so much?

From a purely biological point of view, it seems obvious that during certain periods of life – childhood for instance – social bonds are important for survival.  Perhaps anything that helped make the breaking of such bonds feel bad, might be selected for?  Its a very complex evolutionary genetic problem to be sure.  One way to begin to solve this question might be to study genes like OPRM1 and ask how and why they might be important for survival.

Such is the case for Christina Barr and colleagues, who, in their paper, “Variation at the mu-opioid receptor gene (OPRM1) influences attachment behavior in infant primates” [doi:10.1073/pnas.0710225105] examine relationships between emotional bonds and genetics in rhesus macaques.  The team examines an amino acid substitution polymorphism in the N-terminus of the OPRM1 protein (C77G which leads to an Arginine to Proline change at position 26).  This polymorphism is similar to the human polymorphism (covered here) A118G (which leads to an Asparagine to Aspartate change at position 40).  Binding studies showed that both the 77G and 118G alleles have a higher affinity for beta-endorphin peptides.

Interestingly, Barr and colleagues find that the classical “pain gene” OPRM1 G-allele carrier macaques display higher levels of attachment to their mothers during a critical developmental phase (18-24 months of age).  These G-allele carriers were also more prone to distress vocalizations when temporarily separated from their mothers and they also spent more time (than did CC controls) with their mothers when reunited.  Hence, there ?may be? some preliminary credence to the notion that a gene involved in feeling pleasant/unpleasant might have been used during evolution to reinforce social interactions between mother and child.  The authors place their results into a larger context of the work of John Bowlby who is known for developing a theory of attachment and the consequences of attachment style on later phases of emotional life.

Click here for a previous interview with Dr. Barr and a post on another related project of hers.

Reblog this post [with Zemanta]

Read Full Post »

The recent paper, “Comparative genomics of autism and schizophrenia” by Bernard Crespi and colleagues provides a very exciting take on how genetic data can be mined to understand cognitive development and mental illness.  Looking at genetic association data for autism and schizophrenia, the authors point out that 4 loci are associated with both schizophrenia and autism – however, with a particular twist.  In the case of 1q21.1 and 22q11.21 it seems that genetic deletions are associated with schizophrenia while duplications at this locus are associated with autism.  At 16p11.2 and 22q13.3  it seems that duplications are associated with schizophrenia and deletions are associated with autism.  Thus both loci contain genes that regulate brain development such that too much (duplication) or too little (deletion) of these genes can cause brain development to go awry.  The authors point to genes involved in cellular and synaptic growth for which loss-of-function in growth inhibition genes (which would cause overgrowth) have been associated with autism while loss-of-function in growth promoting genes (which would cause undergrowth) have been associated with schizophrenia.  Certainly there is much evidence for overproduction of synapses in the autism-spectrum disorders and loss of synapses in schizophrenia.  Crespi et al., [doi:10.1073/pnas.0906080106]

Other research covered (here, here) demonstrates the importance of the proper balance of excitatory and inhibitory signalling during cortical development.

Reblog this post [with Zemanta]

Read Full Post »

The human brain is renown for its complexity.  Indeed, while we often marvel at the mature brain in its splendid form and capability, its even more staggering to consider how to build such a powerful computing machine.  Admittedly, mother nature has been working on this for a long time – perhaps since the first neuronal cells and cell networks appeared on the scene hundreds of millions of years ago.  In that case, shouldn’t things be pretty well figured out by now?  Consider the example of Down syndrome, a developmental disability that affects about 1 in 800 children.  In this disability, a mere 50% increase in a relative handful of genes is enough to alter the development of the human brain.  To me, its somehow surprising that the development of such a complex organ can be so sensitive to minor disruptions – but perhaps that’s the main attribute of the design – to factor-in aspects of the early environment whilst building.  Perhaps?

So what are these genes that, in the case of Down syndrome, can alter the course of brain development?  Well, it is widely known that individuals with Down syndrome have an extra copy of chromosome 21.  However, the disorder does not necessarily depend on having an extra copy of each and every gene on chromosome 21.   Rare partial trisomies of only 5.4 million base-pairs on 21q22 can produce the same developmental outcomes as the full chromosome trisomy.  Also, it turns out that mice have a large chunk of mouse chromosome 16 that has the very same linear array of genes (synteny) found on human chromosome 21 (see the figure here).  In mice that have an extra copy of about 104 genes, (the Ts65Dn segment above) many of the developmental traits related to brain structure and physiology are observed.  In mice that have an extra copy of about 81 genes, this is also the case (the Ts1Cje segment).

To focus this line of research even further, the recent paper by Belichenko et al., “The “Down Syndrome Critical Region” Is Sufficient in the Mouse Model to Confer Behavioral, Neurophysiological, and Synaptic Phenotypes Characteristic of Down Syndrome” [DOI:10.1523/JNEUROSCI.1547-09.2009]  examine brain structure, physiology and behavior in a line of mice that carry an extra copy of just 33 genes (this is the Ts1Rhr segment seen in the figure above).  Interestingly, these mice display many of the various traits (admittedly mouse versions) that have been associated with Down syndrome – thus greatly narrowing the search from a whole chromosome to a small number of genes.  20 out of 48 Down syndrome-related traits such as enlargement of dendritic spines, reductions of dendritic spines, brain morphology and various behaviors were  observed.  The authors suggest that 2 genes in this Ts1Rhr segment, in particular, look like intriguing candidates.  DYRK1A a gene, that when over-expressed can lead to hippocampal-dependent learning deficits, and KCNJ6, a potassium channel which could readily drive neurons to hyperpolarize if over-expressed.

Reblog this post [with Zemanta]

Read Full Post »

Eight women representing prominent mental diag...
Image via Wikipedia

pointer to symptommedia.org – fantastic video resource of specific symptoms of mental illness.

“The intention of these clips are to be used in the classroom setting as visual compliments to the written description of symptoms for psychological phenomena found in the DSM handbook.”

Reblog this post [with Zemanta]

Read Full Post »

Drowning
Image by Sbrimbillina via Flickr

Here’s a gene whose relationship to mental function is very straightforward.  If you hold your breath, your blood pH falls (more CO2 leads to more free H+ protons dissolved in your blood stream).  You also may become anxious, or worse if you are forced to hold your breath.  How does this process work?

Ziemann et al., in their new paper, “The Amygdala Is a Chemosensor that Detects Carbon Dioxide and Acidosis to Elicit Fear Behavior” [doi 10.1016/j.cell.2009.10.029] show that the acid sensing ion channel-1a (ASIC1a) gene is a proton-sensing Na+ and Ca++ channel – designed to activate dendritic spines when sensing H+ and drive neuronal activity.  Mice that lack this gene are not sensitive to higher CO2 levels, but when the protein is replaced in the amygdala, the mice show fearful behavior in response to higher CO2 levels.  Mother nature has provided a very straightforward way – ASIC1a activation of our fear center – of letting us know that no oxygen is a BAD thing!

Reblog this post [with Zemanta]

Read Full Post »

Where da rodents kick it
Image by Scrunchleface via Flickr

A recent GWAS study identified the 3′ region of the liver- (not brain) expressed PECR gene (rs7590720(G) and rs1344694(T)) on chromosome 2 as a risk factor for alcohol dependency.  These results, as reported by Treutlein et al., in “Genome-wide Association Study of Alcohol Dependence” were based on a population of 487 male inpatients and a follow-up re-test in a population of 1024 male inpatients and 996 control participants.

The authors also asked whether lab rats who – given the choice between water-based and ethanol-spiked beverages over the course of 1 year – showed differential gene expression in those rats that were alcohol preferrers vs. alcohol non-preferring rats.  Among a total of 542 genes that were found to be differentially expressed in the amygdala and caudate nucleus of alcohol vs. non-alcohol-preferring rat strains,  a mere 3 genes – that is the human orthologs of these 3 genes – did also show significant association with alcohol dependency in the human populations.  Here are the “rat genes” (ie. human homologs that show differential expression in rats and association with alcohol dependency in humans): rs1614972(C) in the alcohol dehydrogenase 1C (ADH1C) gene, rs13273672(C) in the GATA binding protein 4 (GATA4) gene, and rs11640875(A) in the cadherin 13 (CDH13) gene.

My 23andMe profile gives a mixed AG at rs7590720, and a mixed GT at rs1344694 while I show a mixed CT at rs1614972, CT at rs13273672 and AG at rs11640875.  Boooring! a middling heterozygote at all 5 alcohol prefer/dependency loci.   Were these the loci for chocolate prefer/dependency I would be a full risk-bearing homozygote.

 

Reblog this post [with Zemanta]

Read Full Post »

ruler - STUPID INCOMPETENT MANUFACTURERS
Image by Biking Nikon PDX via Flickr

One of the difficult aspects of understanding mental illness, is separating the real causes of the illness from what might be secondary or tertiary consequences of having the illness.  If you think about a car whose engine is not running normally, there may be many observable things going wrong (pinging sound, stalling, smoke, vibration, overheating, loss of power, etc.) – but, what is the real cause of the problem?  What should be done to fix the car? – a faulty sparkplug or timing belt perhaps?  Such is often the problem in medicine, where a fundamental problem can lead to a complex, hard-to-disentangle, etiology of symptoms.  Ideally, you would fix the core problem and then expect the secondary and tertiary consequences to normalize.

This inherent difficulty, particularly in mental illness, is one of the reasons that genetic research is of such interest.  Presumably, the genetic risk factors are deeper and more fundamentally involved in the root causes of the illness – and hence – are preferable targets for treatment.  The recent paper, “Widespread Reductions of Cortical Thickness in Schizophrenia and Spectrum Disorders and Evidence of Heritability” [Arch Gen Psychiatry. 2009;66(5):467-477] seeks to ascertain whether one aspect of schizophrenia – a widespread and well-documented thinning of the neocortex – is due to genetic risk (hence something that is closer to a primary cause) or – rather – if cortical thinning is not due to genetics, and so more of a secondary consequence of things that go wrong earlier in the development of the illness.

To explore this idea, the team of Goldman et al., did something novel.  Rather than examine the differences in cortical thickness between patients and control subjects, the team evaluated the cortical thickness of 59 patients and 72 unaffected siblings as well as 196 unrelated, matched control participants.  If the cortical thickness of the siblings (who share 50% of their genetic variation) was more similar to the patients, then it would suggest that the cortical thinning of the patients was under genetic control and hence – perhaps – a biological trait that is more of a primary cause.  On the other hand, if the cortical thickness of the siblings (who share 0% of their genetic variation) was more similar to that of the healthy control participants, then it would suggest that cortical thinning was – perhaps more of a secondary consequence of some earlier deficit.

The high-resolution structural neuroimaging allowed the team to carefully assess cortical thickness – which is normally between a mere 2 and 4 millimeters – across different areas of the cortex.  The team reports that, for the most part, the cortical thickness measures of the siblings were more similar to the unrelated controls – thus suggesting that cortical thickness may not be a direct component of the genetic risk architecture for schizophrenia.  Still, the paper discusses several candidate mechanisms which could lead to cortical thinning in the illness – some of which might be assessed in the future using other imaging modalities in the context of their patient/sibling/control experimental design.

Reblog this post [with Zemanta]

Read Full Post »

Gravestone of Samuel Coleridge-Taylor,Wallington
Image by sludgegulper via Flickr

Few events are as hard to understand as the loss of a loved one to suicide – a fatal confluence of factors that are oft scrutinized – but whose analysis can provide little comfort to family and friends.  To me, one frightening and vexing aspect of what is known about the biological roots of depression, anxiety, impulsivity and other mental traits and states associated with suicide, is the way in which early life (even prenatal) experience can influence events in later life.  As covered in this blog here and here, there appear to be very early interactions between emotional experience in early life and the methylation of specific points in the genome.  Such methylation – often referred to as epigenetic marks – can regulate the expression of genes that are important for synaptic plasticity and cognitive development.

The recent paper, “Alternative Splicing, Methylation State, and Expression Profile of Tropomyosin-Related Kinase B in the Frontal Cortex of Suicide Completers” is a recent example of a link between epigenetic marks and suicide.  The team of Ernst et al., examined gene expression profiles from the frontal cortex and cerebellum of 28 males lost to suicide and 11 control, ethnically-matched control participants.  Using a subject-by-subject comparison method described as “extreme value analysis” the team identified 2 Affymetrix probes: 221794_at and 221796_at – that are specific to NTRK2 (TRKB) gene – that showed significantly lower expression in several areas of the frontal cortex.  The team also found that these probes were specific to exon 16 – which is expressed only in the TRKB.T1 isoform that is expressed only in astrocytes.

Further analysis showed that there were no genetic differences in the promoter region of this gene that would explain the expression differences, but, however, that there were 2 methylation sites (epigenetic differences) whose methylation status correlated with expression levels (P=0.01 and 0.004).  As a control, the DNA-methylation at these sites was not correlated with TRKB.T1 expression when DNA and RNA was taken from the cerebellum (a control since the cerebellum is not thought to be directly involved in the regulation of mood).

In the case of TRKB.T1 expression, the team reports that more methylation at these 2 sites in the promoter region is associated with less TRKB.T1 expression in the frontal cortex.  Where and when are these marks laid down?  Are they reversible?  How can we know or suspect what is happening to our epigenome (you can’t measure this by spitting into a cup as with current genome sequencing methods)? To me, the team has identified an important clue from which such follow-up questions can be addressed.  Now that they have a biomarker, they can help us begin to better understand our complex and often difficult emotional lives within a broader biological context.

Reblog this post [with Zemanta]

Read Full Post »

slow motion video
Image via Wikipedia

The neuregulin-1 (NRG1) gene is widely known as one of the most well-replicated genetic risk factors for schizophrenia.  Converging evidence shows that it is associated with schizophrenia at the gene expression and mouse model levels which are consistent with its molecular functions in neural development.   However, in several recent genome-wide association studies (GWAS), there appeared nary a blip of association at the 8p12 locus where NRG1 resides.  What gives?

While there are many possibilities for this phenomenon (some discussed here), the recent paper, “Support for NRG1 as a Susceptibility Factor for Schizophrenia in a Northern Swedish Isolated Population” by Maaike Alaerts and colleagues, suggest that the typical GWAS study may not adequately probe genetic variation at a fine enough scale – or, if you will, use a netting with sufficiently small holes.  By holes, I mean both the physical distance between genetic markers and the frequency with which they occur in populations.  While GWAS studies may use upwards of 500,000 markers – that’s a pretty fine scale net for a 3,000,000,000bp genome (about 6,000bp apart) – Alaerts and colleagues set forth with slightly finer-scale netting.  They focus on a 157kb region that is about 60kb upstream from the start of the NRG1 gene and construct a net consisting of 37 variants between the markers rs4268087 and rs17601950 (average spacing about 5kb).  They used the tagger program to select markers that account for all haplotypes whose frequency is higher than 1.5%.  Thus – even though there are still more than 500 possible snps in the region Alaerts and colleagues are exploring, they are using a slightly finer netting than a typical GWAS.

The results of their analysis (using GENEPOP) of 486 patients and 514 ethnically matched control participants from northern Sweden did reveal significant associations in an area slightly downstream (about 50kb closer to the start point of the NRG1 gene) than the location of the “previously often replicated variants”, suggesting that the region does confer some risk for schizophrenia, but, that diagnostic markers for such risk will be different for different populations.  More telling however are the very weak effects of the haplotypes that show significant association.  Those haplotypes with the most significance show meager differences in how often they are observed in patients vs. controls.  For example, one haplotype was observed in 5% of patients vs. 3% of controls. Others examples were, 11 vs. 9, 25 vs. 22 and 40% vs. 35% – revealing the very modest (krill sized) effects that single genetic variants can have in conferring risk toward mental illness.

However, there are potentially lots of krill in the genomic sea!

Reblog this post [with Zemanta]

Read Full Post »

By Richard Wheeler (Zephyris) 2007. The three ...
Image via Wikipedia

File this story under “the more you know, the more you don’t know” or simply under “WTF!”  The new paper, “Microduplications of 16p11.2 are associated with schizophrenia” [doi:10.1038/ng.474] reveals that a short stretch of DNA on chromosome 16p11.2 is – very rarely – duplicated and – more rarely – deleted.  In an analysis of 8,590 individuals with schizophrenia, 2,172 with developmental delay or autism, 4,822 with bipolar disorder and 30,492 controls, the the microduplication of 16p11.2 was strongly associated with schizophrenia, bipolar and autism while the reciprocal microdeletion was strongly associated with developmental delay or autism – but not associated with schizophrenia or bipolar disorder.

OK, so the title of my post is misleading (hey, its a blog) since there are clearly many additional factors that contribute to the developmental outcome of autism vs. schizophrenia, but this stretch of DNA seems to hold clues about early development of brain systems that go awry in both disorders.  Here is a list of the brain expressed genes in this 600 kbp region (in order from telomere-side to centromere-side): SPN, QPRT, C16orf54, MAZ, PRRT2, C16orf53, MVP, CDIPT, SEZ6L2, ASPHD1, KCTD13, TMEM219, TAOK2, HIRIP3, INO80E, DOC2A, FLJ25404, FAM57B, ALDOA, PPP4C, TBX6, YPEL3, GDPD3, MAPK3, CORO1A.

Any guess as to which one(s) are the culprits?  I’ll go with HIRIP3 given its role in chromatin structure regulation – and the consequent regulation of under- (schiz?)/over- (autism) growth of synapses. What an amazing mystery to pursue.

Reblog this post [with Zemanta]

Read Full Post »

ipod
Image by Oliver Lavery via Flickr

Daniel R. Weinberger, M.D., Chief of the Clinical Brain Disorders Branch and Director of the Genes, Cognition and Psychosis Program, National Institute of Mental Health  discusses the background, findings and general issues of genes and mental illness in this brief interview on his paper, “A primate-specific, brain isoform of KCNH2 affects cortical physiology, cognition, neuronal repolarization and risk of schizophrenia”.  Click  HERE for the podcast and HERE for the original post.

Thanks again to Dr. Weinberger for his generous participation!

Reblog this post [with Zemanta]

Read Full Post »

logo_MoteLgpointer to: amazing project on the complexities of managing mental illness in America today.  Scientific progress makes for policy dilemma in an era of economic decline.  Heartbreaking.

From the website: MINDS ON THE EDGE: Facing Mental Illness is a multi-platform media project that explores severe mental illness in America.

The centerpiece of the project is a television program airing on PBS stations in October 2009. This video component is part of a national initiative that includes extensive web content with tools for civic engagement, active social media on Facebook and Twitter, and an ambitious strategy to engage citizens, professionals in many fields, and policy makers at all levels of government. The goal is to advance consensus about how to improve the kinds of support and treatment available for people with mental illness.

The television program MINDS ON THE EDGE: Facing Mental Illness effectively illuminates challenging ethical issues as well as systemic flaws in program and policy design, service coordination, and resource allocation. These problems are contributing to a mental health system that is widely acknowledged to be broken. MINDS ON THE EDGE also provides a glimpse of innovative solutions that are currently being implemented across the country. These innovations, many shaped by the guidance and expertise of people with mental illness, offer promising solutions and hopeful direction to transform the mental health system.

Reblog this post [with Zemanta]

Read Full Post »

Logo of the United States National Institute o...
Image via Wikipedia

Many thanks to Dr. Christina S. Barr from the National Institutes of Health/National Institute on Alcohol Abuse and Alcoholism-Laboratory of Clinical and Translational Studies, National Institutes of Health Animal Center for taking the time to comment on her team’s recent publication, “Functional CRH variation increases stress-induced alcohol consumption in primates” [doi:10.1073/pnas.0902863106] which was covered here.  On behalf of students and interested readers, I am so grateful to her for doing this!  Thank you Dr. Barr!

For readers who are unfamiliar with the extensive literature on this topic, can you give them some basic background context for the study?

“In rodents, increased CRH system functioning in parts of the brain that drive anxious responding (ie, amygdala) occurs following extended access to alcohol and causes animals to transition to the addicted state.  In rodent lines in which genetic factors drive increased CRH system functioning, those animals are essentially phenocopies of those in the post-dependent state.  We had a variant in the macaque that we expected would drive increased CRH expression in response to stress, and similar variants may exist in humans.  We, therefore, hypothesized that this type of genetic variation may interact with prior stress exposure to increase alcohol drinking.”

Can you tells us more about the experimental design strategy and methods?

“This was a study that relied on use of archived NIAAA datasets. The behavioral and endocrine data had been collected years ago, but we took a gene of interest, and determined whether there was variation. We then put a considerable amount of effort into assessing the functional effects of this variant, in order to have a better understanding of how it might relate to individual variation. We then genotyped archived DNA samples in the colony for this polymorphism.”

“I am actually a veterinarian in addition to being a neuroscientist- we have the “3 R’s”. Reduce, refine, and replace…..meaning that animal studies should involve reduced numbers, should be refined to minimize pain/distress and should be replaced with molecular studies if possible.  This is an example of how you can marry use of archived data and sophisticated molecular biology techniques/data analysis to come up with a testable hypothesis without the use of animal subjects. (of course, it means you need to have access to the datasets….;)”

How do the results relate to broader questions and your field at large?

“I became interested in this system because it is one that appears to be under intense selection.  In a wide variety of animal species, individuals or strains that are particularly stress-reactive may be more likely to survive and reproduce successfully in highly variable or stressful environments. Over the course of human evolution, however, selective pressures have shifted, as have the nature and chronicity of stress exposures.  In fact, in modern society, highly stress-reactive individuals, who are no less likely to be eaten by a predator (predation not being a major cause of mortality in modern humans), may instead be more likely to fall susceptible to various-stress related disorders, including chronic infections, diabetes, heart disease, accelerated brain aging, stress-related psychiatric disorders, and even drug and alcohol problems. Therefore, these genetic variants that are persistent in modern humans may make individuals more vulnerable to “modern problems.”

I do hope this helps. Let me know if it doesn’t, and I will try to better answer your questions.”

THANK YOU AGAIN VERY MUCH DR. BARR!!

Reblog this post [with Zemanta]

Read Full Post »

rsrtlogoIt was a delight today to chat with Monica Coenraads, Executive Director of the Rett Syndrome Research Trust.  The RSRT has teamed up with a deeply focused world-class team of research scientists to translate the fruits of basic research on Rett syndrome into viable cures.   Whether you are a scientist, student or concerned family member, you will learn a lot from exploring the RSRT website, blog as well as this short video lectureJust by a strange, unanticipated coincidence, today marks the 10-year annivesary of the identification of MeCP2 as the underlying gene for Rett syndrome. Click here for prior blog posts on Rett syndrome.  (click here for podcast)

Reblog this post [with Zemanta]

Read Full Post »

Tao Te Ching
Image via Wikipedia

In previous posts, we have explored some of the basic molecular (de-repression of chromatin structure) and cellular (excess synaptogenesis) consequences of mutations in the MeCP2 gene – a.k.a the gene whose loss of function gives rise to Rett syndrome.  One of the more difficult aspects of understanding how a mutation in a lowly gene can give rise to changes in cognitive function is bridging a conceptual gap between biochemical functions of a gene product — to its effects on neural network structure and dynamics.  Sure, we can readily acknowledge that neural computations underlie our mental life and that these neurons are simply cells that link-up in special ways – but just what is it about the “connecting up part” that goes wrong during developmental disorders?

In a recent paper entitled, “Intact Long-Term Potentiation but Reduced Connectivity between Neocortical Layer 5 Pyramidal Neurons in a Mouse Model of Rett Syndrome” [doi: 10.1523/jneurosci.1019-09.2009] Vardhan Dani and Sacha Nelson explore this question in great detail.  They address the question by directly measuring the strength of neural connections between pyramidal cells in the somatosensory cortex of healthy and MeCP2 mutant mice.  In earlier reports, MeCP2 neurons showed weaker neurotransmission and weaker plasticity (an ability to change the strength of interconnection – often estimated by a property known as “long term potentiation” (LTP – see video)).   In this paper, the authors examined the connectivity of cortical cells using an electrophysiological method known as patch clamp recording and found that early in development, the LTP induction was comparable in healthy and MeCP2 mutant animals, and even so once the animals were old enough to show cognitive symptoms.  During these early stages of development, there were also no differences between baseline neurotransmission between cortical cells in normal and MeCP2 mice.  Hmmm – no differences? Yes, during the early stages of development, there were no differences between genetic groups – however – once the team examined later stages of development (4 weeks of age) it was apparent that the MeCP2 animals had weaker amplitudes of cortical-cortical excitatory neurotransmission.  Closer comparisons of when the baseline and LTP deficits occurred, suggested that the LTP deficits are secondary to baseline strength of neurotransmission and connectivity in the developing cortex in MeCP2 animals.

So it seems that MeCP2 can alter the excitatory connection strength of cortical cells.  In the discussion of the paper, the authors point out the importance of a proper balance of inhibition and excitation (yin and yang, if you will) in the construction or “connecting up part” of neural networks.  Just as Rett syndrome may arise due to such a problem in the proper linking-up of cells – who use their excitatory and inhibitory connections to establish balanced feedback loops – so too may other developmental disorders such as autism, Down’s syndrome, fragile X-linked mental retardation arise from an improper balance of inhibition and excitation.

Reblog this post [with Zemanta]

Read Full Post »

Suitcase
Image by audioeric via Flickr

pointer to: The Willard Suitcase Exhibit on the documentation of forgotten belongings – hundreds of suitcases of personal belongings – of former residents of Willard Psychiatric Center.

Reblog this post [with Zemanta]

Read Full Post »

MECP2
Image via Wikipedia

The cognitive and emotional impairments in the autism spectrum disorders can be difficult for parents and siblings to understand and cope with.  Here are some graphics and videos that might assist in understanding how genetic mutations and epigenetic modifications can lead to various forms of social withdrawl commonly observed in the autism spectrum disorders in children.

In this post, the focus is just on the MecP2 gene – where mutations are known to give rise to Rett Syndrome – one of the autism spectrum disorders.  I’ll try and lay out some of the key steps in the typical bare-bones-link-infested-blogger-fashion – starting with mutations in the MecP2 gene.  Disclaimer: there are several fuzzy areas and leaps of faith in the points and mouse model evidence below, and there are many other genes associated with various aspects of autism spectrum disorders that may or may not work in this fashion.  Nevertheless, still it seems one can begin to pull a mechanistic thread from gene to social behavior Stay tuned for more on this topic.

1. The MecP2 gene encodes a protein that binds to 5-Methylcytosine – very simply – a regular cytosine reside with an extra methyl group added at position 5.  Look at the extra -CH3 group on the cytosine residue in the picture at right.  See?  That’s a 5-methylcyctosine residue – and it pairs in the DNA double helix with guanosine (G) in the same fashion as does the regular cyctosine reside (C). 5methC OK, now, mutations in the gene that encode the  MecP2 gene – such as those found at Arginine residue 133 and Serine residue 134 impair the ability of the protein to bind to these 5-Methylcyctosine residues.  bindingMecP2The figure at left illustrates this, and shows how the MecP2 protein lines up with the bulky yellow 5-Methylcytosine residues in the blue DNA double helix during binding.

2. When the MecP2 protein is bound to the methylated DNA, it serves as a binding site for another type of protein – an HDAC or histone deacetylase. The binding of MecP2 and HDAC (and other proteins (see p172 section 5.3 of this online bookChromatin Structure and Gene Expression“)).  The binding of the eponymously named HDAC’s leads to the “de-acetylation” of proteins known as histones.  The movie below illustrates how histone “de-acetylation” leads to the condensation of DNA structure and repression or shutting down of gene expression (when the DNA is tightly coiled, it is inaccessible to transcription factors).  Hence: DNA methylation leads (via MecP2, HDAC binding) to a repression on gene expression.


3. When mutated forms of MecP2 cannot bind, the net result is MORE acetylation and MORE gene expression. As covered previously here, this may not be a good thing during brain development since more gene expression can induce the formation of more synapses and – possibly – lead to neural networks that fail to grow and mature in the “normal” fashion. The figure at right toomanysynapsessuggests that neural networks with too many synapses may not be appropriately connected and may be locked-in to sub-optimal architectures.  Evidence for excessive synaptogenesis is abundant within the autism spectrum disorders.  Neuroligins – a class of genes that have been implicated in autism are known to function in cell & synaptic adhesion (open access review here), and can alter the balance of excitation/inhibition when mutated – which seems consistent with this heuristic model of neural networks that can be too adhesive or sticky.

4. Cognitive and social impairment can result from poor-functioning neural networks containing, but not limited to the amygdala. The normal development of neural networks containing the forntal cortex and amygdala are important for proper social and emotional function.  The last piece of the puzzle then would be to find evidence for developmental abnormalities in these networks and to show that such abnormalities mediate social and/or emotional function.  Such evidence is abundant.

Regarding the effects of MecP2 however, we can consider the work of Adachi et al., who were able to delete the MecP2 gene – just in the amygdala – of (albeit, an adult) mouse.  Doing so, led to the disruption of various emotional behaviors – BUT NOT – of various social interaction deficits that are observed when MecP2 is deleted in the entire forebrain.  This was the case also when the team infused HDAC inhibitors into the amygdala suggesting that loss of transcriptional repression in the adult amygdala may underlie the emotional impariments seen in some autism spectrum disorders.  Hence, such emotional impairments (anxiety etc.) might be treatable in adults (more on this result later and its implications for gene-therapy).

Whew!  Admittedly, the more you know – the more you don’t know.  True here, but still amazing to see the literature starting to interlink across human-genetic, mouse-genetic, human-functional-imaging levels of analysis. Hoping this rambling was helpful.

Reblog this post [with Zemanta]

Read Full Post »

Survey sampling
Image via Wikipedia

pointer to: Razib Khan’s results (600+ respondents!) survey on genetic testing and psychiatric illness.  Very informative!

Reblog this post [with Zemanta]

Read Full Post »

« Newer Posts - Older Posts »